Câu hỏi:

03/07/2023 1,077

Cho tam giác ABC có M là điểm chính giữa cạnh AB. Trên cạnh AC lấy điểm N sao cho CN = 2AN.Đoạn thẳng BN cắt CM ở O.Biết diện tích tam giác OBC bằng 20cm2. Tính diện tích tam giác ABC.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có M là điểm chính giữa cạnh AB. Trên cạnh AC lấy điểm N  (ảnh 1)

Kẻ hai đường cao AD, CF tới đường thẳng BN.

Ta có: M là điểm chính giữa cạnh AB\( \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{2}\)

CN = 2AN\( \Rightarrow \frac{{AN}}{{AC}} = \frac{1}{3}\)

 SAOM = SBOM (Do có cùng chiều cao hạ từ O xuống AB và đáy MA = MB)

Mà SACM = SBCM (Do có cùng chiều cao hạ từ C xuống AB và đáy MA = MB)

Nên suy ra SAOC = SBOC

Lại có: \({S_{AON}} = \frac{1}{2}{S_{CON}}\) (Do có cùng chiều cao hạ từ O xuống AC và đáy CN = 2AN)

Do đó nếu coi A, C là đỉnh thì 2 tam giác trên có diện tích gấp đôi nhưng chung đáy ON nên chiều cao phải gấp đôi nhau

Suy ra \(AD = \frac{1}{2}CF\)

Do đó \({S_{AOB}} = \frac{1}{2}{S_{COB}}\) (do có chung đáy OB mà hai đường cao\(AD = \frac{1}{2}CF\))

Vậy \({S_{ABC}} = {S_{AOB}} + {S_{OBC}} + {S_{AOC}} = \frac{1}{2}{S_{OBC}} + {S_{OBC}} + {S_{OBC}} = \frac{5}{2}\,.\,20 = 50\;\left( {c{m^2}} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số gồm 5 chữ số phân biệt có mặt đủ ba chữ số 1,2,3.

Xem đáp án » 03/07/2023 16,338

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(−4; 1), B(2; 4), C(2; −2).

a) Tìm tọa độ trọng tâm của tam giác ABC.

b) Tìm tọa độ điểm D sao cho C là trọng tâm của tam giác ABD.

c) Tìm tọa độ điểm E sao cho tứ giác ABCE là hình bình hành.

Xem đáp án » 03/07/2023 11,880

Câu 3:

Cho đường tròn (O; R) có đường kính AB, lấy điểm M thuộc đường tròn (O) sao cho AM < MB. Tiếp tuyến tại A của đường tròn (O) cắt tia OM tại S. Đường cao AH của tam giác SAO (H thuộc SO) cắt đường tròn (O) tại D.

1) Chứng minh: SD là tiếp tuyến của đường tròn (O).

2) Kẻ đường kính DE của đường tròn (O). Gọi r là bán kính đường tròn nội tiếp tam giác SAD. Chứng minh M là tâm đường tròn nội tiếp tam giác SAD và tính độ dài đoạn thẳng AE theo R và r.

3) Cho AM = r. Gọi K là giao điểm của BM và AD. Chứng minh: \(\frac{{M{D^2}}}{6} = KH\,.\,KD\).

Xem đáp án » 03/07/2023 7,951

Câu 4:

Cho B=3 + 32 + 33 + ... + 3120. Chứng minh:

a) B chia hết cho 3;

b) B chia hết cho 4;

c) B chia hết cho 13.

Xem đáp án » 03/07/2023 7,236

Câu 5:

Tam giác ABC vuông tại A, AB = a, AC = 3a.Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC.

a) Chứng minh \(\frac{{DE}}{{DB}} = \frac{{DB}}{{DC}}\).

b) Chứng minh tam giác BDE đồng dạng với tam giác CDB.

c) Tính tổng \(\widehat {AEB} + \widehat {BCD}\) bằng hai cách.

Xem đáp án » 03/07/2023 6,058

Câu 6:

Cho đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D.

a) Chứng minh CD = AC + BD.

b) Vẽ EF vuông góc AB tại F, BE cắt AC tại K. CM: AF.BC = KE.EB.

c) EF cắt CB tại I. CM tam giác AFC đồng dạng với tam giác BFD, suy ra FE là tia phân giác của góc CFD.

d) EA cắt CF tại M. EB cắt DF tại N. CM: M, I, N thẳng hàng.

Xem đáp án » 03/07/2023 4,145

Câu 7:

Cho hình chóp S.ABCD có AD và BC không song song. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC.

a) Tìm giao tuyến của (SAD) và (SBC).

b) Chứng minh MN // (ABCD).

c) Tìm giao điểm của đường thẳng SD với (AMN).

Xem đáp án » 03/07/2023 3,973

Bình luận


Bình luận