Cho tam giác ABC có M là điểm chính giữa cạnh AB. Trên cạnh AC lấy điểm N sao cho CN = 2AN.Đoạn thẳng BN cắt CM ở O.Biết diện tích tam giác OBC bằng 20cm2. Tính diện tích tam giác ABC.
Cho tam giác ABC có M là điểm chính giữa cạnh AB. Trên cạnh AC lấy điểm N sao cho CN = 2AN.Đoạn thẳng BN cắt CM ở O.Biết diện tích tam giác OBC bằng 20cm2. Tính diện tích tam giác ABC.
Quảng cáo
Trả lời:

Kẻ hai đường cao AD, CF tới đường thẳng BN.
Ta có: M là điểm chính giữa cạnh AB\( \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{2}\)
CN = 2AN\( \Rightarrow \frac{{AN}}{{AC}} = \frac{1}{3}\)
SAOM = SBOM (Do có cùng chiều cao hạ từ O xuống AB và đáy MA = MB)
Mà SACM = SBCM (Do có cùng chiều cao hạ từ C xuống AB và đáy MA = MB)
Nên suy ra SAOC = SBOC
Lại có: \({S_{AON}} = \frac{1}{2}{S_{CON}}\) (Do có cùng chiều cao hạ từ O xuống AC và đáy CN = 2AN)
Do đó nếu coi A, C là đỉnh thì 2 tam giác trên có diện tích gấp đôi nhưng chung đáy ON nên chiều cao phải gấp đôi nhau
Suy ra \(AD = \frac{1}{2}CF\)
Do đó \({S_{AOB}} = \frac{1}{2}{S_{COB}}\) (do có chung đáy OB mà hai đường cao\(AD = \frac{1}{2}CF\))
Vậy \({S_{ABC}} = {S_{AOB}} + {S_{OBC}} + {S_{AOC}} = \frac{1}{2}{S_{OBC}} + {S_{OBC}} + {S_{OBC}} = \frac{5}{2}\,.\,20 = 50\;\left( {c{m^2}} \right)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)
+) Trường hợp với a là số bất kì kể cả 0
Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)
Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)
Suy ra có \(A_5^3\,.\,A_7^2\) số
+) Trường hợp a = 0
Chọn a có 1 cách
Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)
Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)
Suy ra có \(A_4^3\,.\,C_7^1\) (cách)
Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.
Lời giải
a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).
Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).
Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).
b) Gỉả sử điểm D có tọa độ là D(xD; yD)
Vì C là trọng tâm của tam giác ABD nên ta có:
\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)
Vậy điểm D có tọa độ là D(8; −11).
c) Gỉả sử điểm D có tọa độ là E(xE; yE).
Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)
\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]
\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)
Vậy điểm E có tọa độ là E(−4; −5).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.