Câu hỏi:

03/07/2023 442

Cho hai đường tròn (O) và (O¢) cắt nhau tại A và B như hình bên. Biết OA =15cm, O¢A = 13cm, AB = 24cm. Tính độ dài OO¢.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai đường tròn (O) và (O') cắt nhau tại A và B như hình bên. Biết OA =15cm (ảnh 1)

Gọi H là giao điểm của AB và OO¢.

Vì OO¢ là đường trung trực của AB nên:

OO¢ ^ AB tại H

Suy ra: \(HA = HB = \frac{1}{2}AB = \frac{1}{2}\,.\,24 = 12\;\left( {cm} \right)\)

Áp dụng định lí Pitago vào tam giác vuông AOH, ta có:

AO2 = OH2 + AH2

Suy ra: OH2 = AO2AH2 = 152 − 122 = 81

Þ OH = 9 (cm)

Áp dụng định lí pitago vào tam giác vuông AO¢H, ta có:

AO¢2 = O¢H2 + AH2

Suy ra: O¢H2 = AO¢2AH2 = 132 − 122 = 25

Þ O’H = 5 (cm)

Vậy OO¢ = OH + O¢H = 9 + 5 = 14 (cm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)

+) Trường hợp với a là số bất kì kể cả 0

Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)

Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)

Suy ra có \(A_5^3\,.\,A_7^2\) số

+) Trường hợp a = 0

Chọn a có 1 cách

Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)

Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)

Suy ra có \(A_4^3\,.\,C_7^1\) (cách)

Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.

Lời giải

a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).

Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).

Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).

b) Gỉả sử điểm D có tọa độ là D(xD; yD)

Vì C là trọng tâm của tam giác ABD nên ta có:

\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)

Vậy điểm D có tọa độ là D(8; −11).

c) Gỉả sử điểm D có tọa độ là E(xE; yE).

Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)

\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]

\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)

Vậy điểm E có tọa độ là E(−4; −5).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP