Câu hỏi:
03/07/2023 916
Cho a, b, c là độ dài 3 cạnh tam giác. Chứng minh:
\(\frac{{ab}}{{a + b - c}} + \frac{{bc}}{{b + c - a}} + \frac{{ca}}{{c + a - b}} \ge a + b + c\)
Cho a, b, c là độ dài 3 cạnh tam giác. Chứng minh:
\(\frac{{ab}}{{a + b - c}} + \frac{{bc}}{{b + c - a}} + \frac{{ca}}{{c + a - b}} \ge a + b + c\)
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đặt: \(\left\{ \begin{array}{l}a + b - c = x\\b + c - a = y\\c + a - b = z\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x + y = 2b\\y + z = 2c\\z + x = 2a\end{array} \right.\)
Do a, b, c là độ dài 3 cạnh tam giác nên x; y; z > 0
Ta có: \[A = \frac{{ab}}{{a + b - c}} + \frac{{bc}}{{b + c - a}} + \frac{{ca}}{{c + a - b}}\]
\[ \Rightarrow 4A = \frac{{2a\,.\,2b}}{{a + b - c}} + \frac{{2b\,.\,2c}}{{b + c - a}} + \frac{{2c\,.\,2a}}{{c + a - b}}\]
\[ = \frac{{\left( {z + x} \right)\left( {x + y} \right)}}{x} + \frac{{\left( {x + y} \right)\left( {y + z} \right)}}{y} + \frac{{\left( {y + z} \right)\left( {z + x} \right)}}{z}\]
\[ = 3\left( {x + y + z} \right) + \left( {\frac{{yz}}{x} + \frac{{zx}}{y} + \frac{{xy}}{z}} \right)\]
\[ \ge 3\left( {x + y + z} \right) + \frac{{\left( {x + y + z} \right)xyz}}{{xyz}}\]
= 4(x + y + z) = 4(a + b + c)
Do a; b; c > 0 nên suy ra A ≥ a + b + c (đpcm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)
+) Trường hợp với a là số bất kì kể cả 0
Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)
Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)
Suy ra có \(A_5^3\,.\,A_7^2\) số
+) Trường hợp a = 0
Chọn a có 1 cách
Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)
Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)
Suy ra có \(A_4^3\,.\,C_7^1\) (cách)
Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.
Lời giải
a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).
Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).
Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).
b) Gỉả sử điểm D có tọa độ là D(xD; yD)
Vì C là trọng tâm của tam giác ABD nên ta có:
\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)
Vậy điểm D có tọa độ là D(8; −11).
c) Gỉả sử điểm D có tọa độ là E(xE; yE).
Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)
\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]
\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)
Vậy điểm E có tọa độ là E(−4; −5).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.