Câu hỏi:

13/07/2024 8,779

Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:

a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);

b) BC2 = 3AH2 + BE2 + CF2;

c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét tam giác ABC vuông tại A có AH BC, theo hệ thức lượng trong tam giác vuông ta có:

AB2 = BH . BC

AC2 = CH . BC

Xét tam giác ABH vuông tại H có HE AB, theo hệ thức lượng trong tam giác vuông ta có:

BH2 = BE . BA

Hay \(BE = \frac{{B{H^2}}}{{BA}}\)

Xét tam giác ACH vuông tại H có HF AC, theo hệ thức lượng trong tam giác vuông ta có:

CH2 = CF . CA

Hay \(CF = \frac{{C{H^2}}}{{CA}}\)

Ta có: \(\frac{{A{B^4}}}{{A{C^4}}} = \left( {\frac{{A{B^2}}}{{A{C^2}}}} \right) = \frac{{{{\left( {BH.BC} \right)}^2}}}{{{{\left( {CH.BC} \right)}^2}}} = \frac{{B{H^2}}}{{C{H^2}}} = \frac{{BE.AB}}{{CF.AC}} = \frac{{BE}}{{CF}}.\frac{{AB}}{{AC}}\)

Suy ra  \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\)

Vậy \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).

b) Xét tứ giác AEHF có \(\widehat {{\rm{EAF}}} = \widehat {HE{\rm{A}}} = \widehat {HF{\rm{A}}} = 90^\circ \)

Suy ra AEHF là hình chữ nhật

Do đó AH = EF

 Xét tam giác ABC vuông tại A , theo định lý Pytago ta có:

Media VietJack

Vậy BC2 = 3AH2 + BE2 + CF2

c) Ta có: \(BE\sqrt {CH} + CF\sqrt {BH} \)

Media VietJack

Vậy \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh: \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Xem đáp án » 13/07/2024 13,659

Câu 2:

Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)

a) Chứng minh rằng:  

b) Chứng minh rằng: CD = AC + BD

c) Kẻ OM CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.

Xem đáp án » 13/07/2024 7,558

Câu 3:

Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:

a) CD = AC + BD

b) CD là tiếp tuyến của đường tròn đường kính AB

c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).

Xem đáp án » 13/07/2024 6,190

Câu 4:

Tìm x biết:

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).

Xem đáp án » 13/07/2024 5,771

Câu 5:

Cho 3 tập hợp A = (–∞; 0), B = (1; +∞), C = (0; 1). Tìm (A B ) ∩ C.

Xem đáp án » 13/07/2024 4,825

Câu 6:

Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.

Xem đáp án » 13/07/2024 4,100

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn