Câu hỏi:

13/07/2024 7,092

Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có:

3c2 = c(a + b) + ab

2c2 = ca + cb + ab + c2

2c2 = c(a + c) + b(c + a)

2c2 = (a + c) (b + c)

Gọi d gcd(a + c, b + c)

Do a – b = p P nên d = 1 hoặc d = p

+) Nếu d = 1

Thì a + c = x2, b + c = y2 (xy = 2c)

Suy ra p = (x – y)(x + y).p = 2 (vô lý)

p lẻ thì dễ thấy \[{\rm{x}} = \frac{{p + 1}}{2} = \frac{{a - b + 1}}{2}\]\(y = \frac{{a - b - 1}}{2}\)

Suy ra \(2c = xy = \frac{{\left( {a - b - 1} \right)\left( {a - b + 1} \right)}}{4}\)

Do đó 8c + 1 = (a – b)2 là số chính phương

+) Nếu d = p thì a + c = pm2, b + c = pn2 (2c = pmn)

Suy ra (m – n)(m + n) = 1

Do đó m = 1 và n = 0 (loại)

Vậy 8c + 1 là số chính phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

Media VietJack

a) Xét tam giác ABC vuông tại A có AH BC, theo hệ thức lượng trong tam giác vuông ta có:

AB2 = BH . BC

AC2 = CH . BC

Xét tam giác ABH vuông tại H có HE AB, theo hệ thức lượng trong tam giác vuông ta có:

BH2 = BE . BA

Hay \(BE = \frac{{B{H^2}}}{{BA}}\)

Xét tam giác ACH vuông tại H có HF AC, theo hệ thức lượng trong tam giác vuông ta có:

CH2 = CF . CA

Hay \(CF = \frac{{C{H^2}}}{{CA}}\)

Ta có: \(\frac{{A{B^4}}}{{A{C^4}}} = \left( {\frac{{A{B^2}}}{{A{C^2}}}} \right) = \frac{{{{\left( {BH.BC} \right)}^2}}}{{{{\left( {CH.BC} \right)}^2}}} = \frac{{B{H^2}}}{{C{H^2}}} = \frac{{BE.AB}}{{CF.AC}} = \frac{{BE}}{{CF}}.\frac{{AB}}{{AC}}\)

Suy ra  \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\)

Vậy \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).

b) Xét tứ giác AEHF có \(\widehat {{\rm{EAF}}} = \widehat {HE{\rm{A}}} = \widehat {HF{\rm{A}}} = 90^\circ \)

Suy ra AEHF là hình chữ nhật

Do đó AH = EF

 Xét tam giác ABC vuông tại A , theo định lý Pytago ta có:

Media VietJack

Vậy BC2 = 3AH2 + BE2 + CF2

c) Ta có: \(BE\sqrt {CH} + CF\sqrt {BH} \)

Media VietJack

Vậy \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay