Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.
Quảng cáo
Trả lời:
Lời giải
Ta có:
3c2 = c(a + b) + ab
⇔ 2c2 = ca + cb + ab + c2
⇔ 2c2 = c(a + c) + b(c + a)
⇔ 2c2 = (a + c) (b + c)
Gọi d gcd(a + c, b + c)
Do a – b = p ∈ P nên d = 1 hoặc d = p
+) Nếu d = 1
Thì a + c = x2, b + c = y2 (xy = 2c)
Suy ra p = (x – y)(x + y).p = 2 (vô lý)
p lẻ thì dễ thấy \[{\rm{x}} = \frac{{p + 1}}{2} = \frac{{a - b + 1}}{2}\] và \(y = \frac{{a - b - 1}}{2}\)
Suy ra \(2c = xy = \frac{{\left( {a - b - 1} \right)\left( {a - b + 1} \right)}}{4}\)
Do đó 8c + 1 = (a – b)2 là số chính phương
+) Nếu d = p thì a + c = pm2, b + c = pn2 (2c = pmn)
Suy ra (m – n)(m + n) = 1
Do đó m = 1 và n = 0 (loại)
Vậy 8c + 1 là số chính phương.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có:

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]
Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].
Lời giải
Lời giải
a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4)
⇔ 2x2 – 8x + 3x – 12 + x2 – 2x – 5x + 10 = 3x2 – 12x – 5x + 20
⇔ –12x – 2 = – 17x + 20
⇔ 5x = 22
\( \Leftrightarrow x = \frac{{22}}{5}\)
Vậy \(x = \frac{{22}}{5}\).
b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1)
⇔ 24x2 – 9x + 16x – 6 – 4x2 – 16x – 7x – 28 = 10x2 – 2x + 5x – 1
⇔ 20x2 – 16x – 34 = 10x2 + 3x – 1
⇔ 10x2 – 19x – 33 = 0
⇔ 10x2 – 30x + 11x – 33 = 0
⇔ 10x(x – 3) + 11(x – 3) = 0
⇔ (10x + 11)(x – 3) = 0
\( \Leftrightarrow \left[ \begin{array}{l}10{\rm{x}} + 11 = 0\\x - 3 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{{ - 11}}{{10}}\\x = 3\end{array} \right.\)
Vậy \(x = \frac{{ - 11}}{{10}}\) hoặc x = 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.