Câu hỏi:

19/08/2025 9,238 Lưu

Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có:

3c2 = c(a + b) + ab

2c2 = ca + cb + ab + c2

2c2 = c(a + c) + b(c + a)

2c2 = (a + c) (b + c)

Gọi d gcd(a + c, b + c)

Do a – b = p P nên d = 1 hoặc d = p

+) Nếu d = 1

Thì a + c = x2, b + c = y2 (xy = 2c)

Suy ra p = (x – y)(x + y).p = 2 (vô lý)

p lẻ thì dễ thấy \[{\rm{x}} = \frac{{p + 1}}{2} = \frac{{a - b + 1}}{2}\]\(y = \frac{{a - b - 1}}{2}\)

Suy ra \(2c = xy = \frac{{\left( {a - b - 1} \right)\left( {a - b + 1} \right)}}{4}\)

Do đó 8c + 1 = (a – b)2 là số chính phương

+) Nếu d = p thì a + c = pm2, b + c = pn2 (2c = pmn)

Suy ra (m – n)(m + n) = 1

Do đó m = 1 và n = 0 (loại)

Vậy 8c + 1 là số chính phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

Media VietJack

a) Vì tam giác ACO vuông tại A

Nên \(\widehat {AOC} + \widehat {AC{\rm{O}}} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Ta có: \(\widehat {AOC} + \widehat {CD{\rm{O}}} + \widehat {DOB} = 180^\circ \)

Hay \(\widehat {AOC} + \widehat {DOB} = 180^\circ - \widehat {CD{\rm{O}}} = 180^\circ - 90^\circ = 90^\circ \)

Suy ra \(\widehat {BO{\rm{D}}} = \widehat {AC{\rm{O}}}\)

Xét ∆ACO và ∆BDO có

\(\widehat {CAO} = \widehat {DBO}\left( { = 90^\circ } \right)\)

\(\widehat {BO{\rm{D}}} = \widehat {AC{\rm{O}}}\) (Chứng minh trên)

Suy ra  (g.g)

b) Gọi E là giao điểm của CO và BD

Xét ∆ACO và ∆BEO có

\(\widehat {CAO} = \widehat {EBO}\left( { = 90^\circ } \right)\)

AO = BO (giả thiết)

\(\widehat {BOE} = \widehat {AOC}\) (hai góc đối đỉnh)

Suy ra ∆ACO và ∆BEO (g.c.g)

Do đó AC = BE, CO = OE (các cặp cạnh tương ứng)

Xét ∆COD và ∆EOD có

OD là cạnh chung;

\(\widehat {CO{\rm{D}}} = \widehat {EOD}\left( { = 90^\circ } \right)\);

CO = OE (chứng minh trên)

Suy ra ∆COD và ∆EOD (c.g.c)

Do đó CD = DE (hai cạnh tương ứng)

Ta có CD = DE = BD + BE = BD + AC

Vậy CD = AC + BD

c) Ta có AC AB và DB AB

Suy ra AC // BD

Do đó \(\widehat {CAN} = \widehat {N{\rm{D}}B}\) (hai góc so le trong)

Xét ∆ANC và ∆DNB có

\(\widehat {ANC} = \widehat {BN{\rm{D}}}\) (hai góc đối đỉnh)

\(\widehat {CAN} = \widehat {N{\rm{D}}B}\) (Chứng minh trên)

Suy ra  (g.g)

Do đó \(\frac{{AN}}{{ND}} = \frac{{AC}}{{B{\rm{D}}}}\)

Mà AC = BE nên \(\frac{{AN}}{{ND}} = \frac{{BE}}{{B{\rm{D}}}}\)

Ta có DC = DE (chứng minh câu a)

Suy ra tam giác DCE cân ở D

Mà DO là đường cao

Nên DO là phân giác của \(\widehat {C{\rm{D}}E}\)

Suy ra \(\widehat {{\rm{CD}}O} = \widehat {O{\rm{D}}E}\)

Xét ∆MOD và ∆BOD có

\(\widehat {{\rm{DMO}}} = \widehat {DBO}\left( { = 90^\circ } \right)\)

OD là cạnh chung

\(\widehat {{\rm{MD}}O} = \widehat {O{\rm{DB}}}\) (chứng minh trên)

Suy ra ∆MOD = ∆BOD (cạnh huyền – góc nhọn)

Do đó MD = BD, OM = OB

Mà OB = OA nên OM = OA

Xét ∆MOC và ∆AOC có

\(\widehat {{\rm{CMO}}} = \widehat {CAO}\left( { = 90^\circ } \right)\)

OC là cạnh chung

OM = OA (chứng minh trên)

Suy ra ∆MOC = ∆AOC (cạnh huyền – cạnh góc vuông)

Do đó MC = AC

Khi đó: \(\frac{{AN}}{{ND}} = \frac{{BE}}{{B{\rm{D}}}} = \frac{{AC}}{{BD}} = \frac{{CM}}{{DM}}\)

Suy ra MN // AC (định lí Talet đảo)

Vậy MN // AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP