Câu hỏi:
13/07/2024 7,390Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:
a) CD = AC + BD
b) CD là tiếp tuyến của đường tròn đường kính AB
c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Gọi E là giao điểm của CO và BD
Xét ∆ACO và ∆BEO có
\(\widehat {CAO} = \widehat {EBO}\left( { = 90^\circ } \right)\)
AO = BO (giả thiết)
\(\widehat {BOE} = \widehat {AOC}\) (hai góc đối đỉnh)
Suy ra ∆ACO và ∆BEO (g.c.g)
Do đó AC = BE, CO = OE (các cặp cạnh tương ứng)
Xét ∆COD và ∆EOD có
OD là cạnh chung
\(\widehat {CO{\rm{D}}} = \widehat {EOD}\left( { = 90^\circ } \right)\)
CO = OE (chứng minh trên)
Suy ra ∆COD và ∆EOD (c.g.c)
Do đó CD = DE (hai cạnh tương ứng)
Ta có CD = DE = BD + BE = BD + AC
Vậy CD = AC + BD
b) Kẻ OH ⊥ CD
Ta có DC = DE (chứng minh câu a)
Suy ra tam giác DCE cân ở D
Mà DO là đường cao nên DO đồng thời là phân giác của \(\widehat {C{\rm{D}}E}\)
Suy ra \(\widehat {{\rm{CD}}O} = \widehat {O{\rm{D}}E}\)
Xét ∆HOD và ∆BOD có
\(\widehat {{\rm{DHO}}} = \widehat {DBO}\left( { = 90^\circ } \right)\)
OD là cạnh chung
\(H = \widehat {O{\rm{DB}}}\) (chứng minh trên)
Suy ra ∆HOD và ∆BOD (cạnh huyền – góc nhọn)
Do đó OH = OB, HD = BD (các cặp cạnh tương ứng)
Mà OB là bán kính của (O)
Suy ra H thuộc (O)
Lại có OH ⊥ CD nên CD là tiếp tuyến của (O)
c) Xét ∆HOC và ∆AOC có
\(\widehat {{\rm{CHO}}} = \widehat {CAO}\left( { = 90^\circ } \right)\)
OC là cạnh chung
OH = OA (= OB)
Suy ra ∆HOC = ∆AOC (cạnh huyền – cạnh góc vuông)
Do đó HC = AC
Xét tam giác COD vuông tại O có OH ⊥ CD
Theo hệ thức lượng trong tam giác có
OH2 = CH . DH
Ta có: \(AC.B{\rm{D}} = CH.DH = O{H^2} = O{A^2} = {\left( {\frac{{BC}}{2}} \right)^2} = \frac{{B{C^2}}}{4}\)
Vậy \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:
a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);
b) BC2 = 3AH2 + BE2 + CF2;
c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Câu 3:
Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)
a) Chứng minh rằng:
b) Chứng minh rằng: CD = AC + BD
c) Kẻ OM ⊥ CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.
Câu 4:
Tìm x biết:
a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).
b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).
Câu 5:
Câu 6:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!