Câu hỏi:

13/07/2024 9,538

Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:

a) CD = AC + BD

b) CD là tiếp tuyến của đường tròn đường kính AB

c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Gọi E là giao điểm của CO và BD

Xét ∆ACO và ∆BEO có

\(\widehat {CAO} = \widehat {EBO}\left( { = 90^\circ } \right)\)

AO = BO (giả thiết)

\(\widehat {BOE} = \widehat {AOC}\) (hai góc đối đỉnh)

Suy ra ∆ACO và ∆BEO (g.c.g)

Do đó AC = BE, CO = OE (các cặp cạnh tương ứng)

Xét ∆COD và ∆EOD có

OD là cạnh chung

\(\widehat {CO{\rm{D}}} = \widehat {EOD}\left( { = 90^\circ } \right)\)

CO = OE (chứng minh trên)

Suy ra ∆COD và ∆EOD (c.g.c)

Do đó CD = DE (hai cạnh tương ứng)

Ta có CD = DE = BD + BE = BD + AC

Vậy CD = AC + BD

b) Kẻ OH CD

Ta có DC = DE (chứng minh câu a)

Suy ra tam giác DCE cân ở D

Mà DO là đường cao nên DO đồng thời là phân giác của \(\widehat {C{\rm{D}}E}\)

Suy ra \(\widehat {{\rm{CD}}O} = \widehat {O{\rm{D}}E}\)

Xét ∆HOD và ∆BOD có

\(\widehat {{\rm{DHO}}} = \widehat {DBO}\left( { = 90^\circ } \right)\)

OD là cạnh chung

\(H = \widehat {O{\rm{DB}}}\) (chứng minh trên)

Suy ra ∆HOD và ∆BOD (cạnh huyền – góc nhọn)

Do đó OH = OB, HD = BD (các cặp cạnh tương ứng)

Mà OB là bán kính của (O)

Suy ra H thuộc (O)

Lại có OH CD nên CD là tiếp tuyến của (O)

c) Xét ∆HOC và ∆AOC có

\(\widehat {{\rm{CHO}}} = \widehat {CAO}\left( { = 90^\circ } \right)\)

OC là cạnh chung

OH = OA (= OB)

Suy ra ∆HOC = ∆AOC (cạnh huyền – cạnh góc vuông)

Do đó HC = AC

Xét tam giác COD vuông tại O có OH CD

Theo hệ thức lượng trong tam giác có

OH2 = CH . DH

Ta có: \(AC.B{\rm{D}} = CH.DH = O{H^2} = O{A^2} = {\left( {\frac{{BC}}{2}} \right)^2} = \frac{{B{C^2}}}{4}\)

Vậy \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

Media VietJack

a) Xét tam giác ABC vuông tại A có AH BC, theo hệ thức lượng trong tam giác vuông ta có:

AB2 = BH . BC

AC2 = CH . BC

Xét tam giác ABH vuông tại H có HE AB, theo hệ thức lượng trong tam giác vuông ta có:

BH2 = BE . BA

Hay \(BE = \frac{{B{H^2}}}{{BA}}\)

Xét tam giác ACH vuông tại H có HF AC, theo hệ thức lượng trong tam giác vuông ta có:

CH2 = CF . CA

Hay \(CF = \frac{{C{H^2}}}{{CA}}\)

Ta có: \(\frac{{A{B^4}}}{{A{C^4}}} = \left( {\frac{{A{B^2}}}{{A{C^2}}}} \right) = \frac{{{{\left( {BH.BC} \right)}^2}}}{{{{\left( {CH.BC} \right)}^2}}} = \frac{{B{H^2}}}{{C{H^2}}} = \frac{{BE.AB}}{{CF.AC}} = \frac{{BE}}{{CF}}.\frac{{AB}}{{AC}}\)

Suy ra  \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\)

Vậy \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).

b) Xét tứ giác AEHF có \(\widehat {{\rm{EAF}}} = \widehat {HE{\rm{A}}} = \widehat {HF{\rm{A}}} = 90^\circ \)

Suy ra AEHF là hình chữ nhật

Do đó AH = EF

 Xét tam giác ABC vuông tại A , theo định lý Pytago ta có:

Media VietJack

Vậy BC2 = 3AH2 + BE2 + CF2

c) Ta có: \(BE\sqrt {CH} + CF\sqrt {BH} \)

Media VietJack

Vậy \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay