Câu hỏi:

13/07/2024 9,019

Tìm x biết:

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4)

2x2 – 8x + 3x – 12 + x2 – 2x – 5x + 10 = 3x2 – 12x – 5x + 20

–12x – 2 = – 17x + 20

5x = 22

\( \Leftrightarrow x = \frac{{22}}{5}\)

Vậy \(x = \frac{{22}}{5}\).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1)

24x2 – 9x + 16x – 6 – 4x2 – 16x – 7x – 28 = 10x2 – 2x + 5x – 1

20x2 – 16x – 34 = 10x2 + 3x – 1

10x2 – 19x – 33 = 0

10x2 – 30x + 11x – 33 = 0

10x(x – 3) + 11(x – 3) = 0

(10x + 11)(x – 3) = 0

\( \Leftrightarrow \left[ \begin{array}{l}10{\rm{x}} + 11 = 0\\x - 3 = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{{ - 11}}{{10}}\\x = 3\end{array} \right.\)

Vậy \(x = \frac{{ - 11}}{{10}}\) hoặc x = 3.

Avatar

An Nguyễn Văn

Tìm x biết (4 x + 1 )(3 x - 7) -( 2x - 3) (6 x - 5)=3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

Media VietJack

a) Xét tam giác ABC vuông tại A có AH BC, theo hệ thức lượng trong tam giác vuông ta có:

AB2 = BH . BC

AC2 = CH . BC

Xét tam giác ABH vuông tại H có HE AB, theo hệ thức lượng trong tam giác vuông ta có:

BH2 = BE . BA

Hay \(BE = \frac{{B{H^2}}}{{BA}}\)

Xét tam giác ACH vuông tại H có HF AC, theo hệ thức lượng trong tam giác vuông ta có:

CH2 = CF . CA

Hay \(CF = \frac{{C{H^2}}}{{CA}}\)

Ta có: \(\frac{{A{B^4}}}{{A{C^4}}} = \left( {\frac{{A{B^2}}}{{A{C^2}}}} \right) = \frac{{{{\left( {BH.BC} \right)}^2}}}{{{{\left( {CH.BC} \right)}^2}}} = \frac{{B{H^2}}}{{C{H^2}}} = \frac{{BE.AB}}{{CF.AC}} = \frac{{BE}}{{CF}}.\frac{{AB}}{{AC}}\)

Suy ra  \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\)

Vậy \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).

b) Xét tứ giác AEHF có \(\widehat {{\rm{EAF}}} = \widehat {HE{\rm{A}}} = \widehat {HF{\rm{A}}} = 90^\circ \)

Suy ra AEHF là hình chữ nhật

Do đó AH = EF

 Xét tam giác ABC vuông tại A , theo định lý Pytago ta có:

Media VietJack

Vậy BC2 = 3AH2 + BE2 + CF2

c) Ta có: \(BE\sqrt {CH} + CF\sqrt {BH} \)

Media VietJack

Vậy \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay