Câu hỏi:

13/07/2024 15,776

Cho góc hình học \(\widehat {uOv}\) = 45°. Xác định số đo của góc lượng giác (Ou, Ov) trong mỗi trường hợp sau:
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta có:

- Góc lượng giác tia đầu Ou, tia cuối Ov, quay theo chiều dương có số đo là

sđ(Ou, Ov) = 45°.

- Góc lượng giác có tia đầu Ou, tia cuối Ov, quay theo chiều âm có số đo là

sđ(Ou, Ov) = – (360° – 45°) = – 315°. 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Vì 0 < α < \(\frac{\pi }{2}\) nên sin α > 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

\(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{1}{5}} \right)}^2}} = \frac{{2\sqrt 6 }}{5}\).

Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{2\sqrt 6 }} = \frac{{\sqrt 6 }}{{12}}\).

b) Vì \(\frac{\pi }{2} < \alpha < \pi \) nên cos α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

\(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{2}{3}} \right)}^2}} = - \frac{{\sqrt 5 }}{3}\).

Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{ - \frac{{\sqrt 5 }}{3}}} = - \frac{2}{{\sqrt 5 }} = - \frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{2\sqrt 5 }}{5}}} = - \frac{{\sqrt 5 }}{2}\).

c) Ta có: \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\).

Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên cos α < 0. Mặt khác, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra

\(\cos \alpha = - \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} = - \sqrt {\frac{1}{{1 + {{\left( {\sqrt 5 } \right)}^2}}}} = - \frac{{\sqrt 6 }}{6}\).

Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cot \alpha = \sqrt 5 .\left( { - \frac{{\sqrt 6 }}{6}} \right) = - \frac{{\sqrt {30} }}{6}\).

d) Ta có: \(\tan \alpha = \frac{1}{{\cot \alpha }} = \frac{1}{{ - \frac{1}{{\sqrt 2 }}}} = - \sqrt 2 \).

Vì \(\frac{{3\pi }}{2} < \alpha < 2\pi \) nên cos α > 0. Mặt khác, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra

\(\cos \alpha = \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} = \sqrt {\frac{1}{{1 + {{\left( { - \sqrt 2 } \right)}^2}}}} = \frac{{\sqrt 3 }}{3}\).

Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cot \alpha = - \sqrt 2 .\left( {\frac{{\sqrt 3 }}{3}} \right) = - \frac{{\sqrt 6 }}{3}\).

Lời giải

Lời giải:

Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên sin α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

\(\sin \alpha = - \sqrt {1 - {{\cos }^2}\alpha } = - \sqrt {1 - {{\left( { - \frac{2}{3}} \right)}^2}} = - \frac{{\sqrt 5 }}{3}\).

Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \frac{{\sqrt 5 }}{3}}}{{ - \frac{2}{3}}} = \frac{{\sqrt 5 }}{2}\) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\frac{{\sqrt 5 }}{2}}} = \frac{2}{{\sqrt 5 }} = \frac{{2\sqrt 5 }}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay