Câu hỏi:
13/07/2024 6,729
Cho ba tia Ou, Ov, Ow với số đo của các góc hình học uOv và vOw lần lượt là 30° và 45°.

a) Xác định số đo của ba góc lượng giác (Ou, Ov), (Ov, Ow) và (Ou, Ow) được chỉ ra ở Hình 1.5.
b) Với các góc lượng giác ở câu a, chứng tỏ rằng có một số nguyên k để
sđ(Ou, Ov) + sđ(Ov, Ow) = sđ(Ou, Ow) + k360°.
Cho ba tia Ou, Ov, Ow với số đo của các góc hình học uOv và vOw lần lượt là 30° và 45°.
a) Xác định số đo của ba góc lượng giác (Ou, Ov), (Ov, Ow) và (Ou, Ow) được chỉ ra ở Hình 1.5.
b) Với các góc lượng giác ở câu a, chứng tỏ rằng có một số nguyên k để
sđ(Ou, Ov) + sđ(Ov, Ow) = sđ(Ou, Ow) + k360°.
Quảng cáo
Trả lời:
Lời giải:
a) Quan sát Hình 1.5 ta có:
sđ(Ou, Ov) = 30°;
sđ(Ov, Ow) = 45°;
sđ(Ou, Ow) = – (360° – 30° – 45°) = – 285°.
b) Ta có: sđ(Ou, Ov) + sđ(Ov, Ow) = 30° + 45° = 75°.
Lại có: – 285° + 1 . 360° = 75°.
Vậy tồn tại một số nguyên k = 1 để sđ(Ou, Ov) + sđ(Ov, Ow) = sđ(Ou, Ow) + k360°.Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Vì 0 < α < \(\frac{\pi }{2}\) nên sin α > 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra
\(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{1}{5}} \right)}^2}} = \frac{{2\sqrt 6 }}{5}\).
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{2\sqrt 6 }} = \frac{{\sqrt 6 }}{{12}}\).
b) Vì \(\frac{\pi }{2} < \alpha < \pi \) nên cos α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra
\(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{2}{3}} \right)}^2}} = - \frac{{\sqrt 5 }}{3}\).
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{ - \frac{{\sqrt 5 }}{3}}} = - \frac{2}{{\sqrt 5 }} = - \frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{2\sqrt 5 }}{5}}} = - \frac{{\sqrt 5 }}{2}\).
c) Ta có: \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\).
Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên cos α < 0. Mặt khác, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra
\(\cos \alpha = - \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} = - \sqrt {\frac{1}{{1 + {{\left( {\sqrt 5 } \right)}^2}}}} = - \frac{{\sqrt 6 }}{6}\).
Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cot \alpha = \sqrt 5 .\left( { - \frac{{\sqrt 6 }}{6}} \right) = - \frac{{\sqrt {30} }}{6}\).
d) Ta có: \(\tan \alpha = \frac{1}{{\cot \alpha }} = \frac{1}{{ - \frac{1}{{\sqrt 2 }}}} = - \sqrt 2 \).
Vì \(\frac{{3\pi }}{2} < \alpha < 2\pi \) nên cos α > 0. Mặt khác, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra
\(\cos \alpha = \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} = \sqrt {\frac{1}{{1 + {{\left( { - \sqrt 2 } \right)}^2}}}} = \frac{{\sqrt 3 }}{3}\).
Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cot \alpha = - \sqrt 2 .\left( {\frac{{\sqrt 3 }}{3}} \right) = - \frac{{\sqrt 6 }}{3}\).
Lời giải
Lời giải:
Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên sin α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra
\(\sin \alpha = - \sqrt {1 - {{\cos }^2}\alpha } = - \sqrt {1 - {{\left( { - \frac{2}{3}} \right)}^2}} = - \frac{{\sqrt 5 }}{3}\).
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \frac{{\sqrt 5 }}{3}}}{{ - \frac{2}{3}}} = \frac{{\sqrt 5 }}{2}\) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\frac{{\sqrt 5 }}{2}}} = \frac{2}{{\sqrt 5 }} = \frac{{2\sqrt 5 }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.