Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Biểu thức tan 2x có nghĩa khi \(2x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z}\)\( \Leftrightarrow x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,k \in \mathbb{Z}\).
Suy ra hàm số y = tan 2x có tập xác định là D = \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
Với mọi số thực x, ta có:
+) \(x - \frac{\pi }{2} \in D,\,x + \frac{\pi }{2} \in D\);
+) \(\tan 2\left( {x + \frac{\pi }{2}} \right) = \tan \left( {2x + \pi } \right) = \tan 2x\).
Vậy y = tan 2x là hàm số tuần hoàn với chu kì \(T = \frac{\pi }{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = \(90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.
a) Tìm chu kì của sóng.
b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.
Câu 2:
Xét tính chẵn lẻ của các hàm số sau:
a) y = sin 2x + tan 2x;
b) y = cos x + sin2 x;
c) y = sin x cos 2x;
d) y = sin x + cos x.
Câu 3:
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \).
Câu 4:
Tìm tập giá trị của các hàm số sau:
a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) y = \(\sqrt {1 + \cos x} - 2\).
Câu 6:
về câu hỏi!