Câu hỏi:
13/07/2024 43,786
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = \(90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.
a) Tìm chu kì của sóng.
b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = \(90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.
a) Tìm chu kì của sóng.
b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.
Quảng cáo
Trả lời:
Lời giải:
a) Chu kì của sóng là \(T = \frac{{2\pi }}{{\frac{\pi }{{10}}}} = 20\) (giây).
b) Ta có: h(t) = \(90\cos \left( {\frac{\pi }{{10}}.t} \right)\), hàm số này có giá trị lớn nhất và nhỏ nhất lần lượt là 90 và – 90.
Vậy chiều cao của sóng là 180 cm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Biểu thức sin 2x + tan 2x có nghĩa khi cos 2x ≠ 0 (do \(\tan 2x = \frac{{\sin 2x}}{{\cos 2x}}\)), tức là \(2x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\) \( \Leftrightarrow x \ne \frac{\pi }{4} + k\frac{\pi }{2},k \in \mathbb{Z}\).
Suy ra tập xác định của hàm số y = f(x) = sin 2x + tan 2x là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = sin (– 2x) + tan (– 2x) = – sin 2x – tan 2x = – (sin 2x + tan 2x) = – f(x), ∀ x ∈ D.
Vậy y = sin 2x + tan 2x là hàm số lẻ.
b) Tập xác định của hàm số y = f(x) = cos x + sin2 x là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = cos (– x) + sin2 (– x) = cos x + (– sin x)2 = cos x + sin2 x = f(x), ∀ x ∈ D.
Vậy y = cos x + sin2 x là hàm số chẵn.
c) Tập xác định của hàm số y = f(x) = sin x cos 2x là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = sin (– x) . cos (– 2x) = – sin x . cos 2x = – f(x), ∀ x ∈ D.
Vậy y = sin x cos 2x là hàm số lẻ.
d) Tập xác định của hàm số y = f(x) = sin x + cos x là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = sin (– x) + cos (– x) = – sin x + cos x ≠ – f(x).
Vậy y = sin x + cos x là hàm số không chẵn, không lẻ.
Lời giải
Lời giải:
a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi sin x ≠ 0, tức là x ≠ kπ, k ∈ ℤ.
Vậy tập xác định của hàm số \(y = \frac{{1 - \cos x}}{{\sin x}}\) là D = ℝ \ {kπ | k ∈ ℤ}.
b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ \begin{array}{l}\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0\\2 - \cos x \ne 0\end{array} \right.\).
Vì – 1 ≤ cos x ≤ 1 nên 1 + cos x ≥ 0 với mọi x ∈ ℝ và 2 – cos x ≥ 1 > 0 với mọi x ∈ ℝ.
Do đó, 2 – cos x ≠ 0 với mọi x ∈ ℝ và \(\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0\) với mọi x ∈ ℝ.
Vậy tập xác định của hàm số \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) là D = ℝ.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.