Câu hỏi:
13/07/2024 22,679Tìm tập giá trị của các hàm số sau:
a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) y = \(\sqrt {1 + \cos x} - 2\).
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1\) với mọi x ∈ ℝ
\( \Leftrightarrow - 2 \le 2\sin \left( {x - \frac{\pi }{4}} \right) \le 2\) với mọi x ∈ ℝ
\( \Leftrightarrow - 2 - 1 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 2 - 1\) với mọi x ∈ ℝ
\( \Leftrightarrow - 3 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 1\) với mọi x ∈ ℝ
⇔ – 3 ≤ y ≤ 1 với mọi x ∈ ℝ.
Vậy tập giá trị của hàm số y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\) là [– 3; 1].
b) Vì – 1 ≤ cos x ≤ 1 với mọi x ∈ ℝ nên 0 ≤ 1 + cos x ≤ 2 với mọi x ∈ ℝ.
Do đó, \(0 \le \sqrt {1 + \cos x} \le \sqrt 2 \) với mọi x ∈ ℝ.
Suy ra \( - 2 \le \sqrt {1 + \cos x} - 2 \le \sqrt 2 - 2\) với mọi x ∈ ℝ.
Hay \( - 2 \le y \le \sqrt 2 - 2\)với mọi x ∈ ℝ.
Vậy tập giá trị của hàm số y = \(\sqrt {1 + \cos x} - 2\) là \(\left[ { - 2;\,\,\sqrt 2 - 2} \right]\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Chu kì của sóng là \(T = \frac{{2\pi }}{{\frac{\pi }{{10}}}} = 20\) (giây).
b) Ta có: h(t) = \(90\cos \left( {\frac{\pi }{{10}}.t} \right)\), hàm số này có giá trị lớn nhất và nhỏ nhất lần lượt là 90 và – 90.
Vậy chiều cao của sóng là 180 cm.
Lời giải
Lời giải:
a) Biểu thức sin 2x + tan 2x có nghĩa khi cos 2x ≠ 0 (do \(\tan 2x = \frac{{\sin 2x}}{{\cos 2x}}\)), tức là \(2x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\) \( \Leftrightarrow x \ne \frac{\pi }{4} + k\frac{\pi }{2},k \in \mathbb{Z}\).
Suy ra tập xác định của hàm số y = f(x) = sin 2x + tan 2x là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = sin (– 2x) + tan (– 2x) = – sin 2x – tan 2x = – (sin 2x + tan 2x) = – f(x), ∀ x ∈ D.
Vậy y = sin 2x + tan 2x là hàm số lẻ.
b) Tập xác định của hàm số y = f(x) = cos x + sin2 x là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = cos (– x) + sin2 (– x) = cos x + (– sin x)2 = cos x + sin2 x = f(x), ∀ x ∈ D.
Vậy y = cos x + sin2 x là hàm số chẵn.
c) Tập xác định của hàm số y = f(x) = sin x cos 2x là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = sin (– x) . cos (– 2x) = – sin x . cos 2x = – f(x), ∀ x ∈ D.
Vậy y = sin x cos 2x là hàm số lẻ.
d) Tập xác định của hàm số y = f(x) = sin x + cos x là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = sin (– x) + cos (– x) = – sin x + cos x ≠ – f(x).
Vậy y = sin x + cos x là hàm số không chẵn, không lẻ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận