Câu hỏi:
13/07/2024 20,510Tìm tập giá trị của các hàm số sau:
a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) y = \(\sqrt {1 + \cos x} - 2\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1\) với mọi x ∈ ℝ
\( \Leftrightarrow - 2 \le 2\sin \left( {x - \frac{\pi }{4}} \right) \le 2\) với mọi x ∈ ℝ
\( \Leftrightarrow - 2 - 1 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 2 - 1\) với mọi x ∈ ℝ
\( \Leftrightarrow - 3 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 1\) với mọi x ∈ ℝ
⇔ – 3 ≤ y ≤ 1 với mọi x ∈ ℝ.
Vậy tập giá trị của hàm số y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\) là [– 3; 1].
b) Vì – 1 ≤ cos x ≤ 1 với mọi x ∈ ℝ nên 0 ≤ 1 + cos x ≤ 2 với mọi x ∈ ℝ.
Do đó, \(0 \le \sqrt {1 + \cos x} \le \sqrt 2 \) với mọi x ∈ ℝ.
Suy ra \( - 2 \le \sqrt {1 + \cos x} - 2 \le \sqrt 2 - 2\) với mọi x ∈ ℝ.
Hay \( - 2 \le y \le \sqrt 2 - 2\)với mọi x ∈ ℝ.
Vậy tập giá trị của hàm số y = \(\sqrt {1 + \cos x} - 2\) là \(\left[ { - 2;\,\,\sqrt 2 - 2} \right]\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = \(90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.
a) Tìm chu kì của sóng.
b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.
Câu 2:
Xét tính chẵn lẻ của các hàm số sau:
a) y = sin 2x + tan 2x;
b) y = cos x + sin2 x;
c) y = sin x cos 2x;
d) y = sin x + cos x.
Câu 3:
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \).
Câu 6:
về câu hỏi!