Câu hỏi:

11/07/2024 1,882

Cho hàm số \(f\left( x \right) = \frac{{4 - {x^2}}}{{x - 2}}\).

a) Tìm tập xác định của hàm số f(x).

b) Cho dãy số \({x_n} = \frac{{2n + 1}}{n}\). Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).

c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn 2, tính f(xn) và tìm \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Biểu thức f(x) có nghĩa khi x – 2 ≠ 0 x ≠ 2.

Do đó, tập xác định của hàm số f(x) là D = ℝ \ {2}.

b) Ta có:

\(f\left( {{x_n}} \right) = \frac{{4 - {{\left( {\frac{{2n + 1}}{n}} \right)}^2}}}{{\frac{{2n + 1}}{n} - 2}}\)\( = \frac{{4 - {{\left( {2 + \frac{1}{n}} \right)}^2}}}{{\left( {2 + \frac{1}{n}} \right) - 2}} = \frac{{4 - \left( {4 + \frac{4}{n} + \frac{1}{{{n^2}}}} \right)}}{{\frac{1}{n}}}\) \(\frac{{ - \frac{1}{n}\left( {4 + \frac{1}{n}} \right)}}{{\frac{1}{n}}} = - 4 - \frac{1}{n}\).

\(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left( { - 4 - \frac{1}{n}} \right) = - 4\).

c) Ta có: \(f\left( {{x_n}} \right) = \frac{{4 - x_n^2}}{{{x_n} - 2}} = \frac{{\left( {2 - {x_n}} \right)\left( {2 + {x_n}} \right)}}{{ - \left( {2 - {x_n}} \right)}} = - 2 - {x_n}\).

Vì xn ≠ 2 và xn 2 với mọi n nên \(\mathop {\lim }\limits_{n \to + \infty } {x_n} = 2\).

Do đó, \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \left( { - 2 - {x_n}} \right) = - 2 - 2 = - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\);

b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\).

Xem đáp án » 12/07/2024 8,961

Câu 2:

Tính các giới hạn một bên:

a) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}}\);

b) \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}}\).

Xem đáp án » 11/07/2024 8,085

Câu 3:

Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).

Tính \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\).

Xem đáp án » 12/07/2024 7,786

Câu 4:

Cho hai hàm số \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}}\) và g(x) = x + 1. Khẳng định nào sau đây là đúng?

a) f(x) = g(x);

b) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

Xem đáp án » 12/07/2024 7,075

Câu 5:

Cho hàm số \(g\left( x \right) = \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}}\).

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} g\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right)\).

Xem đáp án » 12/07/2024 5,030

Câu 6:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x}\);

b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}}\).

Xem đáp án » 11/07/2024 5,012

Câu 7:

Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{\sqrt x - 1}}\).

Xem đáp án » 12/07/2024 4,814

Bình luận


Bình luận