Câu hỏi:

11/07/2024 2,496 Lưu

Cho hàm số \(f\left( x \right) = \frac{{4 - {x^2}}}{{x - 2}}\).

a) Tìm tập xác định của hàm số f(x).

b) Cho dãy số \({x_n} = \frac{{2n + 1}}{n}\). Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).

c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn 2, tính f(xn) và tìm \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Biểu thức f(x) có nghĩa khi x – 2 ≠ 0 x ≠ 2.

Do đó, tập xác định của hàm số f(x) là D = ℝ \ {2}.

b) Ta có:

\(f\left( {{x_n}} \right) = \frac{{4 - {{\left( {\frac{{2n + 1}}{n}} \right)}^2}}}{{\frac{{2n + 1}}{n} - 2}}\)\( = \frac{{4 - {{\left( {2 + \frac{1}{n}} \right)}^2}}}{{\left( {2 + \frac{1}{n}} \right) - 2}} = \frac{{4 - \left( {4 + \frac{4}{n} + \frac{1}{{{n^2}}}} \right)}}{{\frac{1}{n}}}\) \(\frac{{ - \frac{1}{n}\left( {4 + \frac{1}{n}} \right)}}{{\frac{1}{n}}} = - 4 - \frac{1}{n}\).

\(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left( { - 4 - \frac{1}{n}} \right) = - 4\).

c) Ta có: \(f\left( {{x_n}} \right) = \frac{{4 - x_n^2}}{{{x_n} - 2}} = \frac{{\left( {2 - {x_n}} \right)\left( {2 + {x_n}} \right)}}{{ - \left( {2 - {x_n}} \right)}} = - 2 - {x_n}\).

Vì xn ≠ 2 và xn 2 với mọi n nên \(\mathop {\lim }\limits_{n \to + \infty } {x_n} = 2\).

Do đó, \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \left( { - 2 - {x_n}} \right) = - 2 - 2 = - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\), x – 1 > 0 với mọi x > 1 và

\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} \right) = 1 - 2 = - 1 < 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}} = - \infty \).

b) Ta có: \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {4 - x} \right) = 0\), 4 – x > 0 với mọi x < 4 và

\(\mathop {\lim }\limits_{x \to {4^ - }} \left( {{x^2} - x + 1} \right) = {4^2} - 4 + 1 = 13 > 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}} = + \infty \).

Lời giải

Lời giải:

Ta có: \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{2}{{x - 1}} \cdot \frac{1}{{x - 2}}\)

+) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} = + \infty \) (do x – 2 > 0 khi x > 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = + \infty \).

+) \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{1}{{x - 2}} = - \infty \) (do x – 2 < 0 khi x < 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP