Câu hỏi:

11/07/2024 269

Cho hàm số \(f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{x - 1}}\).

a) Cho \({x_n} = 1 - \frac{1}{{n + 1}}\) và \({x'_n} = 1 + \frac{1}{n}\). Tính yn = f(xn) và y'n = f(x'n).

b) Tìm giới hạn của các dãy số (yn) và (y'n).

c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn 1, x'n 1, tính \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\) và \[\mathop {\lim }\limits_{n \to + \infty } f\left( {{{x'}_n}} \right)\].

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Ta có: \({x_n} = 1 - \frac{1}{{n + 1}} < 1\) với mọi n > 0 \( \Rightarrow {x_n} - 1 < 0\) với mọi n > 0.

Do đó, \({y_n} = f\left( {{x_n}} \right) = \frac{{\left| {{x_n} - 1} \right|}}{{{x_n} - 1}}\)\( = \frac{{ - \left( {{x_n} - 1} \right)}}{{{x_n} - 1}} = - 1\).

Ta cũng có: \({x'_n} = 1 + \frac{1}{n} > 1\) với mọi n > 0 x'n – 1 > 0 với mọi n > 0.

Do đó, \({y'_n} = f\left( {{{x'}_n}} \right) = \frac{{\left| {{{x'}_n} - 1} \right|}}{{{{x'}_n} - 1}}\)\( = \frac{{{{x'}_n} - 1}}{{{{x'}_n} - 1}} = 1\).

b) Ta có \(\mathop {\lim }\limits_{n \to + \infty } {y_n} = \mathop {\lim }\limits_{n \to + \infty } \left( { - 1} \right) = - 1\); \(\mathop {\lim }\limits_{n \to + \infty } {y'_n} = \mathop {\lim }\limits_{n \to + \infty } 1 = 1\).

c) Ta có: \(f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{x - 1}}\)\( = \left\{ \begin{array}{l}\frac{{x - 1}}{{x - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x - 1 > 0\,\,\,\,\,\\\frac{{ - \left( {x - 1} \right)}}{{x - 1}}\,\,\,\,\,\,\,\,n\^e 'u\,\,x - 1 < 0\end{array} \right.\)\( = \left\{ \begin{array}{l}1\,\,\,\,\,\,\,\,n\^e 'u\,\,x - 1 > 0\,\,\,\,\,\\ - 1\,\,\,\,n\^e 'u\,\,x - 1 < 0\end{array} \right.\)

Vì xn < 1 < x'n, suy ra xn – 1 < 0 và x'n – 1 > 0 với mọi n.

Do đó, f(xn) = – 1 và f(x'n) = 1.

Vậy \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\) = – 1 và \[\mathop {\lim }\limits_{n \to + \infty } f\left( {{{x'}_n}} \right)\] = 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\);

b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\).

Xem đáp án » 12/07/2024 9,074

Câu 2:

Tính các giới hạn một bên:

a) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}}\);

b) \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}}\).

Xem đáp án » 11/07/2024 8,308

Câu 3:

Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).

Tính \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\).

Xem đáp án » 12/07/2024 7,958

Câu 4:

Cho hai hàm số \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}}\) và g(x) = x + 1. Khẳng định nào sau đây là đúng?

a) f(x) = g(x);

b) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

Xem đáp án » 12/07/2024 7,241

Câu 5:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x}\);

b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}}\).

Xem đáp án » 11/07/2024 5,097

Câu 6:

Cho hàm số \(g\left( x \right) = \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}}\).

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} g\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right)\).

Xem đáp án » 12/07/2024 5,088

Câu 7:

Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{\sqrt x - 1}}\).

Xem đáp án » 12/07/2024 4,893

Bình luận


Bình luận
Vietjack official store