Câu hỏi:

12/07/2024 2,475 Lưu

Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 2} }}{{x + 1}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 2} }}{{x + 1}}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2}\left( {1 + \frac{2}{{{x^2}}}} \right)} }}{{x + 1}}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {1 + \frac{2}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 + \frac{2}{{{x^2}}}} }}{{1 + \frac{1}{x}}}\)

\( = \frac{{\mathop {\lim }\limits_{x \to + \infty } \sqrt {1 + \frac{2}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to + \infty } \left( {1 + \frac{1}{x}} \right)}} = \frac{{\sqrt {\mathop {\lim }\limits_{x \to + \infty } 1 + \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to + \infty } 1 + \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x}}}\)\( = \frac{{\sqrt 1 }}{1} = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\), x – 1 > 0 với mọi x > 1 và

\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} \right) = 1 - 2 = - 1 < 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}} = - \infty \).

b) Ta có: \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {4 - x} \right) = 0\), 4 – x > 0 với mọi x < 4 và

\(\mathop {\lim }\limits_{x \to {4^ - }} \left( {{x^2} - x + 1} \right) = {4^2} - 4 + 1 = 13 > 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}} = + \infty \).

Lời giải

Lời giải:

Ta có: \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{2}{{x - 1}} \cdot \frac{1}{{x - 2}}\)

+) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} = + \infty \) (do x – 2 > 0 khi x > 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = + \infty \).

+) \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{1}{{x - 2}} = - \infty \) (do x – 2 < 0 khi x < 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP