Câu hỏi:
11/07/2024 662Cho tam giác vuông OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.
a) Tính h theo a.
b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?
c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: A = (a; 0) ⇒ OA = a; B = (0; 1) ⇒ OB = 1
Tam giác OAB vuông tại O có đường cao OH nên ta có
\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\)
Do đó, \(\frac{1}{{{h^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{1^2}}}\)\( \Rightarrow h = \) \(\sqrt {\frac{{{a^2}}}{{{a^2} + 1}}} \) \( = \frac{a}{{\sqrt {{a^2} + 1} }}\).
b) Khi điểm A dịch chuyển về O, ta có OA = a = 0, suy ra h = 0, do đó điểm H dịch chuyển về điểm O.
c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, ta có OA = a ⟶ +∞.
Ta có: \(\mathop {\lim }\limits_{a \to + \infty } h = \mathop {\lim }\limits_{a \to + \infty } \sqrt {\frac{{{a^2}}}{{{a^2} + 1}}} \)\[ = \mathop {\lim }\limits_{a \to + \infty } \sqrt {\frac{{{a^2}}}{{{a^2}\left( {1 + \frac{1}{{{a^2}}}} \right)}}} \]\( = \mathop {\lim }\limits_{a \to + \infty } \sqrt {\frac{1}{{1 + \frac{1}{{{a^2}}}}}} = 1\).
Do đó, điểm H dịch chuyển về điểm B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hàm số \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}}\) và g(x) = x + 1. Khẳng định nào sau đây là đúng?
a) f(x) = g(x);
b) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
Câu 2:
Trong Thuyết tương đối của Einstein, khối lượng của vật chuyển động với vận tốc v cho bởi công thức
\(m = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\),
trong đó m0 là khối lượng của vật khi nó đứng yên, c là vận tốc ánh sáng. Chuyện gì xảy ra với khối lượng của vật khi vận tốc của vật gần với vận tốc ánh sáng?
Câu 3:
Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).
Tính \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\).
Câu 4:
Cho hàm số \(g\left( x \right) = \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}}\).
Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} g\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right)\).
Câu 5:
Câu 6:
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\);
b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\).
Câu 7:
Cho hàm số \(f\left( x \right) = \frac{{4 - {x^2}}}{{x - 2}}\).
a) Tìm tập xác định của hàm số f(x).
b) Cho dãy số \({x_n} = \frac{{2n + 1}}{n}\). Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).
c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn ⟶ 2, tính f(xn) và tìm \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\).
về câu hỏi!