Câu hỏi:

11/07/2024 1,730

Cho tam giác vuông OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.

Media VietJack

a) Tính h theo a.

b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Ta có: A = (a; 0) OA = a; B = (0; 1) OB = 1

Tam giác OAB vuông tại O có đường cao OH nên ta có

\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\)

Do đó, \(\frac{1}{{{h^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{1^2}}}\)\( \Rightarrow h = \) \(\sqrt {\frac{{{a^2}}}{{{a^2} + 1}}} \) \( = \frac{a}{{\sqrt {{a^2} + 1} }}\).

b) Khi điểm A dịch chuyển về O, ta có OA = a = 0, suy ra h = 0, do đó điểm H dịch chuyển về điểm O.

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, ta có OA = a +∞.

Ta có: \(\mathop {\lim }\limits_{a \to + \infty } h = \mathop {\lim }\limits_{a \to + \infty } \sqrt {\frac{{{a^2}}}{{{a^2} + 1}}} \)\[ = \mathop {\lim }\limits_{a \to + \infty } \sqrt {\frac{{{a^2}}}{{{a^2}\left( {1 + \frac{1}{{{a^2}}}} \right)}}} \]\( = \mathop {\lim }\limits_{a \to + \infty } \sqrt {\frac{1}{{1 + \frac{1}{{{a^2}}}}}} = 1\).

Do đó, điểm H dịch chuyển về điểm B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\), x – 1 > 0 với mọi x > 1 và

\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} \right) = 1 - 2 = - 1 < 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}} = - \infty \).

b) Ta có: \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {4 - x} \right) = 0\), 4 – x > 0 với mọi x < 4 và

\(\mathop {\lim }\limits_{x \to {4^ - }} \left( {{x^2} - x + 1} \right) = {4^2} - 4 + 1 = 13 > 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}} = + \infty \).

Lời giải

Lời giải:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2}\left( {1 + \frac{1}{{{x^2}}}} \right)} }}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {\frac{1}{x} - 2} \right)}}{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{1}{x} - 2}}{{\sqrt {1 + \frac{1}{{{x^2}}}} }} = \frac{{ - 2}}{{\sqrt 1 }} =  - 2\).

b) Ta có: \(\sqrt {{x^2} + x + 2} - x = \frac{{{{\left( {\sqrt {{x^2} + x + 2} } \right)}^2} - {x^2}}}{{\sqrt {{x^2} + x + 2} + x}}\)\( = \frac{{x + 2}}{{\sqrt {{x^2} + x + 2} + x}}\)

Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\) \( = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 2}}{{\sqrt {{x^2} + x + 2} + x}}\)

\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 2}}{{\sqrt {{x^2}\left( {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} \right)} + x}}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 2}}{{x\sqrt {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} + x}}\)

\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {1 + \frac{2}{x}} \right)}}{{x\left( {\sqrt {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{2}{x}}}{{\sqrt {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} + 1}} = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP