Câu hỏi:

11/07/2024 356

Xét hàm số \(f\left( x \right) = \frac{1}{{{x^2}}}\) có đồ thị như Hình 5.6.

Media VietJack

Cho \({x_n} = \frac{1}{n}\), chứng tỏ rằng f(xn) +∞.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta có: \({x_n} = \frac{1}{n}\), do đó \(f\left( {{x_n}} \right) = \frac{1}{{x_n^2}} = \frac{1}{{{{\left( {\frac{1}{n}} \right)}^2}}} = {n^2}\).

Vì n +∞ nên \({x_n} = \frac{1}{n} \to 0\) và f(xn) +∞.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\);

b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\).

Xem đáp án » 12/07/2024 7,880

Câu 2:

Tính các giới hạn một bên:

a) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}}\);

b) \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}}\).

Xem đáp án » 11/07/2024 6,538

Câu 3:

Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).

Tính \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\).

Xem đáp án » 12/07/2024 6,361

Câu 4:

Cho hai hàm số \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}}\) và g(x) = x + 1. Khẳng định nào sau đây là đúng?

a) f(x) = g(x);

b) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

Xem đáp án » 12/07/2024 6,065

Câu 5:

Cho hàm số \(g\left( x \right) = \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}}\).

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} g\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right)\).

Xem đáp án » 12/07/2024 4,497

Câu 6:

Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{\sqrt x - 1}}\).

Xem đáp án » 12/07/2024 4,286

Câu 7:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x}\);

b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}}\).

Xem đáp án » 11/07/2024 4,285

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store