Câu hỏi:

11/07/2024 4,586 Lưu

Cho hàm số \(H\left( t \right) = \left\{ \begin{array}{l}0\,\,\,n\^e 'u\,\,t < 0\\1\,\,\,\,n\^e 'u\,\,t \ge 0\end{array} \right.\) (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/mở của dòng điện tại thời điểm t = 0).

Tính \(\mathop {\lim }\limits_{t \to {0^ + }} H\left( t \right)\) và \(\mathop {\lim }\limits_{t \to {0^ - }} H\left( t \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Với dãy số (tn) bất kì sao cho tn < 0 và tn 0, ta có H(tn) = 0.

Do đó \(\mathop {\lim }\limits_{t \to {0^ - }} H\left( t \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } H\left( {{t_n}} \right) = \mathop {\lim }\limits_{n \to + \infty } 0 = 0\).

Tương tự, với dãy số (tn) bất kì sao cho tn > 0 và tn 0, ta có H(tn) = 1.

Do đó \(\mathop {\lim }\limits_{t \to {0^ + }} H\left( t \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } H\left( {{t_n}} \right) = \mathop {\lim }\limits_{n \to + \infty } 1 = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\), x – 1 > 0 với mọi x > 1 và

\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} \right) = 1 - 2 = - 1 < 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}} = - \infty \).

b) Ta có: \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {4 - x} \right) = 0\), 4 – x > 0 với mọi x < 4 và

\(\mathop {\lim }\limits_{x \to {4^ - }} \left( {{x^2} - x + 1} \right) = {4^2} - 4 + 1 = 13 > 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}} = + \infty \).

Lời giải

Lời giải:

Ta có: \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{2}{{x - 1}} \cdot \frac{1}{{x - 2}}\)

+) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} = + \infty \) (do x – 2 > 0 khi x > 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = + \infty \).

+) \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{1}{{x - 2}} = - \infty \) (do x – 2 < 0 khi x < 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP