Câu hỏi:
09/07/2023 359Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x \ne 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x = 1.\end{array} \right.\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và so sánh giá trị này với f(1).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
Ta có: f(1) = 2.
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 1 + 1 = 2\).
Vậy \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) = f(1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một bảng giá cước taxi được cho như sau:
Giá mở cửa (0,5 km đầu) |
Giá cước các km tiếp theo đến 30 km |
Giá cước từ km thứ 31 |
10 000 đồng |
13 500 đồng |
11 000 đồng |
a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.
b) Xét tính liên tục của hàm số ở câu a.
Câu 2:
Câu 3:
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}}\);
b) \(f\left( x \right) = \left\{ \begin{array}{l}1 + {x^2}\,\,n\^e 'u\,\,x < 1\\4 - x\,\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\).
Câu 4:
Câu 5:
Tìm giá trị của tham số m để hàm số
\(f\left( x \right) = \left\{ \begin{array}{l}\sin \,x\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\\ - x + m\,\,\,\,\,\,n\^e 'u\,\,x < 0\end{array} \right.\)
liên tục trên ℝ.
Câu 6:
về câu hỏi!