Câu hỏi:
13/07/2024 4,283Dùng định nghĩa hai phân thức bằng nhau, hãy giải thích vì sao có thể viết:
a) \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\);
b) \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\);
c) \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).
Quảng cáo
Trả lời:
Lời giải
a) Ta có: x2y3.2 = 2x2y3 và 2x2y2.y = 2x2y3 nên x2y3.2 = 2x2y2.y
Vậy \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\).
b) Ta có:
(x2 ‒ x ‒ 2).(x ‒ 1) = x3 ‒ x2 ‒ x2 + x ‒ 2x + 2 = x3 ‒ 2x2 ‒ x + 2
Và (x2 ‒ 3x + 2)(x + 1) = x3 + x2 ‒ 3x2 ‒ 3x + 2x + 2 = x3 ‒ 2x2 ‒ x + 2
Nên (x2 ‒ x ‒ 2).(x ‒ 1) = (x2 ‒ 3x + 2)(x + 1)
Vậy \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\).
c) Ta có:
(x + 3)(x2 ‒ 3x + 9) = x3 + 33 = x3 + 27
Và (x3 + 27).1 = x3 + 27
Nên (x2 ‒ 3x + 9)(x + 3) = (x3 + 27).1
Vậy \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có: 15x3y2 = 5x3y2.3; 10x4z3 = 5x3.2xz3; 20y3z = 5y3z.4.
Chọn MTC là: 60x4y3z3
Nhân tử phụ của ba mẫu thức 15x3y2; 10x4z3; 20y3z lần lượt là: 4xyz3; 6y3; 3x4z2.
Vậy: \(\frac{2}{{15{x^3}{y^2}}} = \frac{{2.4xy{z^3}}}{{15{x^3}{y^2}.4xy{z^3}}} = \frac{{8xy{z^3}}}{{60{x^4}{y^3}{z^3}}}\)
\(\frac{y}{{10{x^4}{z^3}}} = \frac{{y.6{y^3}}}{{10{x^4}{z^3}.6{y^3}}} = \frac{{6{y^4}}}{{60{x^4}{y^3}{z^3}}}\)
\(\frac{x}{{20{y^3}z}} = \frac{{x.3{x^4}{z^2}}}{{20{y^3}z.3{x^4}{z^2}}} = \frac{{3{x^5}{z^2}}}{{60{x^4}{y^3}{z^3}}}\).
b) Ta có: 2x + 6 = 2(x + 3); x2 ‒ 9 = (x ‒ 3)(x + 3)
Chọn MTC là: 2(x ‒ 3)(x + 3).
Nhân tử phụ của hai mẫu thức 2x + 6 và x2 ‒ 9 lần lượt là: (x ‒ 3) và 2
Vậy: \(\frac{x}{{2x + 6}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {{x^2} - 9} \right)}}\);
\(\frac{4}{{{x^2} - 9}} = \frac{{4.2}}{{2\left( {{x^2} - 9} \right)}} = \frac{8}{{2\left( {{x^2} - 9} \right)}}\).
c) Ta có: x3 ‒ 1 = (x ‒ 1)(x2 + x + 1) và x2 + x + 1 = x2 + x + 1
Chọn MTC là: x3 ‒ 1 = (x ‒ 1)(x2 + x + 1)
Nhân tử phụ của hai mẫu thức x3 ‒ 1 và x2 + x + 1 lần lượt là: 1 và x ‒ 1.
Vậy: \(\frac{{2x}}{{{x^3} - 1}} = \frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}} = \frac{{\left( {x - 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^3} - 1}}\).
d) Ta có: 1 + 2x + x2 = (1 + x)2;
5x2 ‒ 5 = 5(x2 ‒ 1) = 5(x ‒ 1)(x + 1).
Chọn MTC là: 5(x ‒ 1)(x + 1)2
Nhân tử phụ của hai mẫu thức 1 + 2x + x2 và 5x2 ‒ 5 lần lượt là: 5(x ‒ 1) và x + 1.
Vậy: \(\frac{x}{{1 + 2x + {x^2}}} = \frac{{x.5.\left( {x - 1} \right)}}{{\left( {1 + 2x + {x^2}} \right).5.\left( {x - 1} \right)}} = \frac{{5x\left( {x - 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\)
\(\frac{3}{{5{x^2} - 5}} = \frac{{3.\left( {x + 1} \right)}}{{5\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 1} \right)}} = \frac{{3\left( {x + 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\).
Lời giải
Lời giải
a) Điều kiện xác định của phân thức là x ≠ 0 và y ≠ 0
Ta có: \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}} = \frac{{{x^5}{y^2}}}{{{x^3}{y^3}}} = \frac{{{x^2}}}{y}\).
Với x = 1 ≠ 0; y = 2 ≠ 0, giá trị của phân thức đã cho tại x = 1; y = 2 là:
\(A = \frac{{{1^2}}}{2} = \frac{1}{2}\).
b) Điều kiện xác định của phân thức là 20(2 – x)y2 ≠ 0.
Ta có: \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}} = \frac{{4\left( {2 - x} \right){x^2}}}{{4.5\left( {2 - x} \right){y^2}}} = \frac{{{x^2}}}{{5{y^2}}}\)
Với \(x = \frac{1}{2}\) và \(y = \frac{1}{5}\) ta thấy \(20\left( {2--x} \right){y^2} = 20.\left( {2 - \frac{1}{2}} \right).{\left( {\frac{1}{5}} \right)^2} = \frac{6}{5} \ne 0\)
Do đó, giá trị của phân thức đã cho tại \(x = \frac{1}{2};y = \frac{1}{5}\) là:
\(B = \frac{{{{\left( {\frac{1}{2}} \right)}^2}}}{{5.{{\left( {\frac{1}{5}} \right)}^2}}}\frac{{\frac{1}{4}}}{{5.\frac{1}{{25}}}} = \frac{1}{4}.5 = \frac{5}{4}\).
c) Điều kiện xác định của phân thức là x2 ‒ 1 ≠ 0.
Với x = ‒7 ta thấy x2 – 1 = (–7)2 – 1 = 48 ≠ 0
Do đó, giá trị của phân thức đã cho tại x = ‒7 là:
\(C = \frac{{{{\left( { - 7} \right)}^2} - 8.\left( { - 7} \right) + 7}}{{{{\left( { - 7} \right)}^2} - 1}} = \frac{{49 + 56 + 7}}{{48}} = \frac{{112}}{{48}} = \frac{7}{3}\).
d) Điều kiện xác định của phân thức là x2 ‒ y2 ≠ 0
Ta có: \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}}\)\( = \frac{{5.\left( {{x^2} - 2x + {y^2}} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}}\)
\( = \frac{{5{{\left( {x - y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{5\left( {x - y} \right)}}{{x + y}}\)
Với x = 0,5; y = 0,6 ta thấy x2 ‒ y2 = (0,5)2 – (0,6)2 = –0,11 ≠ 0.
Giá trị của phân thức đã cho tại x = 0,5; y = 0,6 là:
\(B = \frac{{5(0,5 - 0,6)}}{{0,5 + 0,6}} = \frac{{ - 5}}{{11}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 8: Bài luyện tập 3 dạng 4. Tổng hợp có đáp án
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án