Câu hỏi:
13/07/2024 2,192Mỗi cặp phân thức sau có bằng nhau không? Vì sao?
a) \(\frac{x}{{5x + 5}}\) và \(\frac{1}{5}\).
b) \(\frac{{ - x}}{{x - 5}}\) và \(\frac{{ - x\left( {x - 5} \right)}}{{{{\left( {x - 5} \right)}^2}}}\).
c) \(\frac{{ - 5}}{{ - x - y}}\) và \(\frac{5}{{x + y}}\).
d) \(\frac{{ - x}}{{{{\left( {x - 3} \right)}^2}}}\) và \(\frac{x}{{{{\left( {3 - x} \right)}^2}}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có: x.5 = 5x và (5x + 5).1 = 5x + 5.
Do x.5 ≠ (5x + 5).1 nên hai phân thức \(\frac{x}{{5x + 5}}\) và \(\frac{1}{5}\) không bằng nhau.
b) Ta có: ‒x.(x ‒ 5)2 = ‒x(x ‒ 5)2 và (x ‒ 5).[‒x(x ‒ 5)] = ‒x(x ‒ 5)2
Nên ‒x.(x ‒ 5)2 = (x ‒ 5).[‒x(x ‒ 5)].
Vậy \(\frac{{ - x}}{{x - 5}} = \frac{{ - x\left( {x - 5} \right)}}{{{{(x - 5)}^2}}}\).
c) Ta có: ‒5.(x + y) = ‒5(x + y) và (‒x ‒ y).5 = ‒5(x + y)
Nên ‒5.(x + y) = (‒x ‒ y).5
Vậy \(\frac{{ - 5}}{{ - x - y}} = \frac{5}{{x + y}}\).
d) Ta có: ‒x.(3 ‒ x)2 = ‒x(x ‒ 3)2 và (x ‒ 3)2.x = x(x ‒ 3)2.
Do ‒x.(3 ‒ x)2 ≠ (x ‒ 3)2.x nên khi x ≠ 0 và x ≠ 3 thì hai phân thức \(\frac{{ - x}}{{{{\left( {x - 3} \right)}^2}}}\) và \(\frac{x}{{{{\left( {3 - x} \right)}^2}}}\) không bằng nhau.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
a) \(\frac{2}{{15{x^3}{y^2}}};\frac{y}{{10{x^4}{z^3}}}\) và \(\frac{x}{{20{y^3}z}}\);
b) \(\frac{x}{{2x + 6}}\) và \(\frac{4}{{{x^2} - 9}}\);
c) \(\frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}}\);
d) \(\frac{x}{{1 + 2x + {x^2}}}\) và \(\frac{3}{{5{x^2} - 5}}\).
Câu 2:
Dùng định nghĩa hai phân thức bằng nhau, hãy giải thích vì sao có thể viết:
a) \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\);
b) \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\);
c) \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).
Câu 3:
Tính giá trị của biểu thức:
a) \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}}\) tại x = 1 ; y = 2;
b) \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}}\) tại \(x = \frac{1}{2};y = \frac{1}{5}\);
c) \(C = \frac{{{x^2} - 8x + 7}}{{{x^2} - 1}}\) tại x = –7;
d) \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}}\) tại x = 0,5; y = 0,6.
Câu 4:
Rút gọn mỗi phân thức sau:
a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\);
b) \(\frac{{x - y}}{{y - x}}\);
c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\);
d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\).
Câu 5:
Viết điều kiện xác định của mỗi phân thức sau:
a) \(\frac{3}{{2x\left( {5 - x} \right)}}\);
b) \(\frac{{4x}}{{{x^2} - 4}}\);
c) \(\frac{x}{{{y^2} + 2xy}}\);
d) \(\frac{{6,4y}}{{0,4{x^2} + 0,4x}}\).
Câu 6:
Chứng tỏ giá trị của biểu thức sau không phụ thuộc vào giá trị của biến (với \(a\) là một số):
a) \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}}\) (a ≠ 0);
b) \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}}\).
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bài tập Nhân đơn thức với đa thức (có lời giải chi tiết)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
về câu hỏi!