Câu hỏi:
13/07/2024 5,143Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
a) \(\frac{2}{{15{x^3}{y^2}}};\frac{y}{{10{x^4}{z^3}}}\) và \(\frac{x}{{20{y^3}z}}\);
b) \(\frac{x}{{2x + 6}}\) và \(\frac{4}{{{x^2} - 9}}\);
c) \(\frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}}\);
d) \(\frac{x}{{1 + 2x + {x^2}}}\) và \(\frac{3}{{5{x^2} - 5}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có: 15x3y2 = 5x3y2.3; 10x4z3 = 5x3.2xz3; 20y3z = 5y3z.4.
Chọn MTC là: 60x4y3z3
Nhân tử phụ của ba mẫu thức 15x3y2; 10x4z3; 20y3z lần lượt là: 4xyz3; 6y3; 3x4z2.
Vậy: \(\frac{2}{{15{x^3}{y^2}}} = \frac{{2.4xy{z^3}}}{{15{x^3}{y^2}.4xy{z^3}}} = \frac{{8xy{z^3}}}{{60{x^4}{y^3}{z^3}}}\)
\(\frac{y}{{10{x^4}{z^3}}} = \frac{{y.6{y^3}}}{{10{x^4}{z^3}.6{y^3}}} = \frac{{6{y^4}}}{{60{x^4}{y^3}{z^3}}}\)
\(\frac{x}{{20{y^3}z}} = \frac{{x.3{x^4}{z^2}}}{{20{y^3}z.3{x^4}{z^2}}} = \frac{{3{x^5}{z^2}}}{{60{x^4}{y^3}{z^3}}}\).
b) Ta có: 2x + 6 = 2(x + 3); x2 ‒ 9 = (x ‒ 3)(x + 3)
Chọn MTC là: 2(x ‒ 3)(x + 3).
Nhân tử phụ của hai mẫu thức 2x + 6 và x2 ‒ 9 lần lượt là: (x ‒ 3) và 2
Vậy: \(\frac{x}{{2x + 6}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {{x^2} - 9} \right)}}\);
\(\frac{4}{{{x^2} - 9}} = \frac{{4.2}}{{2\left( {{x^2} - 9} \right)}} = \frac{8}{{2\left( {{x^2} - 9} \right)}}\).
c) Ta có: x3 ‒ 1 = (x ‒ 1)(x2 + x + 1) và x2 + x + 1 = x2 + x + 1
Chọn MTC là: x3 ‒ 1 = (x ‒ 1)(x2 + x + 1)
Nhân tử phụ của hai mẫu thức x3 ‒ 1 và x2 + x + 1 lần lượt là: 1 và x ‒ 1.
Vậy: \(\frac{{2x}}{{{x^3} - 1}} = \frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}} = \frac{{\left( {x - 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^3} - 1}}\).
d) Ta có: 1 + 2x + x2 = (1 + x)2;
5x2 ‒ 5 = 5(x2 ‒ 1) = 5(x ‒ 1)(x + 1).
Chọn MTC là: 5(x ‒ 1)(x + 1)2
Nhân tử phụ của hai mẫu thức 1 + 2x + x2 và 5x2 ‒ 5 lần lượt là: 5(x ‒ 1) và x + 1.
Vậy: \(\frac{x}{{1 + 2x + {x^2}}} = \frac{{x.5.\left( {x - 1} \right)}}{{\left( {1 + 2x + {x^2}} \right).5.\left( {x - 1} \right)}} = \frac{{5x\left( {x - 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\)
\(\frac{3}{{5{x^2} - 5}} = \frac{{3.\left( {x + 1} \right)}}{{5\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 1} \right)}} = \frac{{3\left( {x + 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\).
Đã bán 212
Đã bán 374
Đã bán 287
Đã bán 230
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Dùng định nghĩa hai phân thức bằng nhau, hãy giải thích vì sao có thể viết:
a) \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\);
b) \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\);
c) \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).
Câu 2:
Tính giá trị của biểu thức:
a) \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}}\) tại x = 1 ; y = 2;
b) \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}}\) tại \(x = \frac{1}{2};y = \frac{1}{5}\);
c) \(C = \frac{{{x^2} - 8x + 7}}{{{x^2} - 1}}\) tại x = –7;
d) \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}}\) tại x = 0,5; y = 0,6.
Câu 3:
Rút gọn mỗi phân thức sau:
a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\);
b) \(\frac{{x - y}}{{y - x}}\);
c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\);
d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\).
Câu 4:
Mỗi cặp phân thức sau có bằng nhau không? Vì sao?
a) \(\frac{x}{{5x + 5}}\) và \(\frac{1}{5}\).
b) \(\frac{{ - x}}{{x - 5}}\) và \(\frac{{ - x\left( {x - 5} \right)}}{{{{\left( {x - 5} \right)}^2}}}\).
c) \(\frac{{ - 5}}{{ - x - y}}\) và \(\frac{5}{{x + y}}\).
d) \(\frac{{ - x}}{{{{\left( {x - 3} \right)}^2}}}\) và \(\frac{x}{{{{\left( {3 - x} \right)}^2}}}\).
Câu 5:
Viết điều kiện xác định của mỗi phân thức sau:
a) \(\frac{3}{{2x\left( {5 - x} \right)}}\);
b) \(\frac{{4x}}{{{x^2} - 4}}\);
c) \(\frac{x}{{{y^2} + 2xy}}\);
d) \(\frac{{6,4y}}{{0,4{x^2} + 0,4x}}\).
Câu 6:
Chứng tỏ giá trị của biểu thức sau không phụ thuộc vào giá trị của biến (với \(a\) là một số):
a) \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}}\) (a ≠ 0);
b) \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}}\).
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận