Câu hỏi:

13/07/2024 3,226

Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:

a) \(\frac{2}{{15{x^3}{y^2}}};\frac{y}{{10{x^4}{z^3}}}\)\(\frac{x}{{20{y^3}z}}\);

b) \(\frac{x}{{2x + 6}}\)\(\frac{4}{{{x^2} - 9}}\);

c) \(\frac{{2x}}{{{x^3} - 1}}\)\(\frac{{x - 1}}{{{x^2} + x + 1}}\);

d) \(\frac{x}{{1 + 2x + {x^2}}}\)\(\frac{3}{{5{x^2} - 5}}\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có: 15x3y2 = 5x3y2.3; 10x4z3 = 5x3.2xz3; 20y3z = 5y3z.4.

Chọn MTC là: 60x4y3z3

Nhân tử phụ của ba mẫu thức 15x3y2; 10x4z3; 20y3z lần lượt là: 4xyz3; 6y3; 3x4z2.

Vậy: \(\frac{2}{{15{x^3}{y^2}}} = \frac{{2.4xy{z^3}}}{{15{x^3}{y^2}.4xy{z^3}}} = \frac{{8xy{z^3}}}{{60{x^4}{y^3}{z^3}}}\)

\(\frac{y}{{10{x^4}{z^3}}} = \frac{{y.6{y^3}}}{{10{x^4}{z^3}.6{y^3}}} = \frac{{6{y^4}}}{{60{x^4}{y^3}{z^3}}}\)

\(\frac{x}{{20{y^3}z}} = \frac{{x.3{x^4}{z^2}}}{{20{y^3}z.3{x^4}{z^2}}} = \frac{{3{x^5}{z^2}}}{{60{x^4}{y^3}{z^3}}}\).

b) Ta có: 2x + 6 = 2(x + 3); x2 ‒ 9 = (x ‒ 3)(x + 3)

Chọn MTC là: 2(x ‒ 3)(x + 3).

Nhân tử phụ của hai mẫu thức 2x + 6 và x2 ‒ 9 lần lượt là: (x ‒ 3) và 2

Vậy: \(\frac{x}{{2x + 6}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {{x^2} - 9} \right)}}\);

          \(\frac{4}{{{x^2} - 9}} = \frac{{4.2}}{{2\left( {{x^2} - 9} \right)}} = \frac{8}{{2\left( {{x^2} - 9} \right)}}\).

c) Ta có: x3 ‒ 1 = (x ‒ 1)(x2 + x + 1) và x2 + x + 1 = x2 + x + 1

Chọn MTC là: x3 ‒ 1 = (x ‒ 1)(x2 + x + 1)

Nhân tử phụ của hai mẫu thức x3 ‒ 1 và x2 + x + 1 lần lượt là: 1 và x ‒ 1.

Vậy: \(\frac{{2x}}{{{x^3} - 1}} = \frac{{2x}}{{{x^3} - 1}}\)\(\frac{{x - 1}}{{{x^2} + x + 1}} = \frac{{\left( {x - 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^3} - 1}}\).

d) Ta có: 1 + 2x + x2 = (1 + x)2;

               5x2 ‒ 5 = 5(x2 ‒ 1) = 5(x ‒ 1)(x + 1).

Chọn MTC là: 5(x ‒ 1)(x + 1)2

Nhân tử phụ của hai mẫu thức 1 + 2x + x2 và 5x2 ‒ 5 lần lượt là: 5(x ‒ 1) và x + 1.

Vậy: \(\frac{x}{{1 + 2x + {x^2}}} = \frac{{x.5.\left( {x - 1} \right)}}{{\left( {1 + 2x + {x^2}} \right).5.\left( {x - 1} \right)}} = \frac{{5x\left( {x - 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\)

\(\frac{3}{{5{x^2} - 5}} = \frac{{3.\left( {x + 1} \right)}}{{5\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 1} \right)}} = \frac{{3\left( {x + 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Dùng định nghĩa hai phân thức bằng nhau, hãy giải thích vì sao có thể viết:

a) \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\);

b) \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\);

c) \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).

Xem đáp án » 13/07/2024 3,023

Câu 2:

Tính giá trị của biểu thức:

a) \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}}\) tại x = 1 ; y = 2;

b) \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}}\) tại \(x = \frac{1}{2};y = \frac{1}{5}\);

c) \(C = \frac{{{x^2} - 8x + 7}}{{{x^2} - 1}}\) tại x = –7;

d) \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}}\) tại x = 0,5; y = 0,6.

Xem đáp án » 13/07/2024 2,348

Câu 3:

Rút gọn mỗi phân thức sau:

a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\);

b) \(\frac{{x - y}}{{y - x}}\);

c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\);

d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\).

Xem đáp án » 13/07/2024 2,132

Câu 4:

Mỗi cặp phân thức sau có bằng nhau không? Vì sao?

a) \(\frac{x}{{5x + 5}}\)\(\frac{1}{5}\).

b) \(\frac{{ - x}}{{x - 5}}\)\(\frac{{ - x\left( {x - 5} \right)}}{{{{\left( {x - 5} \right)}^2}}}\).

c) \(\frac{{ - 5}}{{ - x - y}}\)\(\frac{5}{{x + y}}\).

d) \(\frac{{ - x}}{{{{\left( {x - 3} \right)}^2}}}\)\(\frac{x}{{{{\left( {3 - x} \right)}^2}}}\).

Xem đáp án » 13/07/2024 1,845

Câu 5:

Viết điều kiện xác định của mỗi phân thức sau:

a) \(\frac{3}{{2x\left( {5 - x} \right)}}\);

b) \(\frac{{4x}}{{{x^2} - 4}}\);

c) \(\frac{x}{{{y^2} + 2xy}}\);

d) \(\frac{{6,4y}}{{0,4{x^2} + 0,4x}}\).

Xem đáp án » 13/07/2024 1,288

Câu 6:

Chứng tỏ giá trị của biểu thức sau không phụ thuộc vào giá trị của biến (với \(a\) là một số):

a) \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}}\) (a ≠ 0);

b) \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}}\).

Xem đáp án » 13/07/2024 847

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn