Câu hỏi:
13/07/2024 801Một miếng bìa có dạng hình vuông với độ dài cạnh là x (cm). Người ta cắt đi ở mỗi góc của miếng bìa một hình vuông sao cho bốn hình vuông bị cắt đi có cùng độ dài cạnh là y (cm) với 0 < 2y < x (Hình 2).
a) Viết phân thức biểu thị tỉ số diện tích của miếng bìa ban đầu và phần miếng bìa còn lại sau khi bị cắt.
b) Tính giá trị của phân thức đó tại x = 4; y = 1.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Diện tích của miếng bìa ban đầu là x2 (cm2)
Diện tích của mỗi góc miếng bìa hình vuông là: y2 (cm2)
Diện tích của phần bìa còn lại sai khi cắt là: x2 ‒ 4y2 (cm2).
Phân số biểu thị tỉ số diện tích của miếng bìa ban đầu và phần miếng bìa còn lại sau khi bị cắt là: \(\frac{{{x^2}}}{{{x^2} - 4y}}\).
b) Giá trị của phân thức \(\frac{{{x^2}}}{{{x^2} - 4y}}\) tại x = 4; y = 1 là:
\(\frac{{{x^2}}}{{{x^2} - 4y}} = \frac{{{4^2}}}{{{4^2} - 4.1}} = \frac{{16}}{{12}} = \frac{4}{3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
a) \(\frac{2}{{15{x^3}{y^2}}};\frac{y}{{10{x^4}{z^3}}}\) và \(\frac{x}{{20{y^3}z}}\);
b) \(\frac{x}{{2x + 6}}\) và \(\frac{4}{{{x^2} - 9}}\);
c) \(\frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}}\);
d) \(\frac{x}{{1 + 2x + {x^2}}}\) và \(\frac{3}{{5{x^2} - 5}}\).
Câu 2:
Dùng định nghĩa hai phân thức bằng nhau, hãy giải thích vì sao có thể viết:
a) \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\);
b) \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\);
c) \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).
Câu 3:
Tính giá trị của biểu thức:
a) \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}}\) tại x = 1 ; y = 2;
b) \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}}\) tại \(x = \frac{1}{2};y = \frac{1}{5}\);
c) \(C = \frac{{{x^2} - 8x + 7}}{{{x^2} - 1}}\) tại x = –7;
d) \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}}\) tại x = 0,5; y = 0,6.
Câu 4:
Rút gọn mỗi phân thức sau:
a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\);
b) \(\frac{{x - y}}{{y - x}}\);
c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\);
d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\).
Câu 5:
Mỗi cặp phân thức sau có bằng nhau không? Vì sao?
a) \(\frac{x}{{5x + 5}}\) và \(\frac{1}{5}\).
b) \(\frac{{ - x}}{{x - 5}}\) và \(\frac{{ - x\left( {x - 5} \right)}}{{{{\left( {x - 5} \right)}^2}}}\).
c) \(\frac{{ - 5}}{{ - x - y}}\) và \(\frac{5}{{x + y}}\).
d) \(\frac{{ - x}}{{{{\left( {x - 3} \right)}^2}}}\) và \(\frac{x}{{{{\left( {3 - x} \right)}^2}}}\).
Câu 6:
Viết điều kiện xác định của mỗi phân thức sau:
a) \(\frac{3}{{2x\left( {5 - x} \right)}}\);
b) \(\frac{{4x}}{{{x^2} - 4}}\);
c) \(\frac{x}{{{y^2} + 2xy}}\);
d) \(\frac{{6,4y}}{{0,4{x^2} + 0,4x}}\).
Câu 7:
Chứng tỏ giá trị của biểu thức sau không phụ thuộc vào giá trị của biến (với \(a\) là một số):
a) \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}}\) (a ≠ 0);
b) \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}}\).
về câu hỏi!