Câu hỏi:
13/07/2024 1,784
Một miếng bìa có dạng hình vuông với độ dài cạnh là x (cm). Người ta cắt đi ở mỗi góc của miếng bìa một hình vuông sao cho bốn hình vuông bị cắt đi có cùng độ dài cạnh là y (cm) với 0 < 2y < x (Hình 2).

a) Viết phân thức biểu thị tỉ số diện tích của miếng bìa ban đầu và phần miếng bìa còn lại sau khi bị cắt.
b) Tính giá trị của phân thức đó tại x = 4; y = 1.
Một miếng bìa có dạng hình vuông với độ dài cạnh là x (cm). Người ta cắt đi ở mỗi góc của miếng bìa một hình vuông sao cho bốn hình vuông bị cắt đi có cùng độ dài cạnh là y (cm) với 0 < 2y < x (Hình 2).

a) Viết phân thức biểu thị tỉ số diện tích của miếng bìa ban đầu và phần miếng bìa còn lại sau khi bị cắt.
b) Tính giá trị của phân thức đó tại x = 4; y = 1.
Quảng cáo
Trả lời:
Lời giải
a) Diện tích của miếng bìa ban đầu là x2 (cm2)
Diện tích của mỗi góc miếng bìa hình vuông là: y2 (cm2)
Diện tích của phần bìa còn lại sai khi cắt là: x2 ‒ 4y2 (cm2).
Phân số biểu thị tỉ số diện tích của miếng bìa ban đầu và phần miếng bìa còn lại sau khi bị cắt là: \(\frac{{{x^2}}}{{{x^2} - 4y}}\).
b) Giá trị của phân thức \(\frac{{{x^2}}}{{{x^2} - 4y}}\) tại x = 4; y = 1 là:
\(\frac{{{x^2}}}{{{x^2} - 4y}} = \frac{{{4^2}}}{{{4^2} - 4.1}} = \frac{{16}}{{12}} = \frac{4}{3}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có: 15x3y2 = 5x3y2.3; 10x4z3 = 5x3.2xz3; 20y3z = 5y3z.4.
Chọn MTC là: 60x4y3z3
Nhân tử phụ của ba mẫu thức 15x3y2; 10x4z3; 20y3z lần lượt là: 4xyz3; 6y3; 3x4z2.
Vậy: \(\frac{2}{{15{x^3}{y^2}}} = \frac{{2.4xy{z^3}}}{{15{x^3}{y^2}.4xy{z^3}}} = \frac{{8xy{z^3}}}{{60{x^4}{y^3}{z^3}}}\)
\(\frac{y}{{10{x^4}{z^3}}} = \frac{{y.6{y^3}}}{{10{x^4}{z^3}.6{y^3}}} = \frac{{6{y^4}}}{{60{x^4}{y^3}{z^3}}}\)
\(\frac{x}{{20{y^3}z}} = \frac{{x.3{x^4}{z^2}}}{{20{y^3}z.3{x^4}{z^2}}} = \frac{{3{x^5}{z^2}}}{{60{x^4}{y^3}{z^3}}}\).
b) Ta có: 2x + 6 = 2(x + 3); x2 ‒ 9 = (x ‒ 3)(x + 3)
Chọn MTC là: 2(x ‒ 3)(x + 3).
Nhân tử phụ của hai mẫu thức 2x + 6 và x2 ‒ 9 lần lượt là: (x ‒ 3) và 2
Vậy: \(\frac{x}{{2x + 6}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {{x^2} - 9} \right)}}\);
\(\frac{4}{{{x^2} - 9}} = \frac{{4.2}}{{2\left( {{x^2} - 9} \right)}} = \frac{8}{{2\left( {{x^2} - 9} \right)}}\).
c) Ta có: x3 ‒ 1 = (x ‒ 1)(x2 + x + 1) và x2 + x + 1 = x2 + x + 1
Chọn MTC là: x3 ‒ 1 = (x ‒ 1)(x2 + x + 1)
Nhân tử phụ của hai mẫu thức x3 ‒ 1 và x2 + x + 1 lần lượt là: 1 và x ‒ 1.
Vậy: \(\frac{{2x}}{{{x^3} - 1}} = \frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}} = \frac{{\left( {x - 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^3} - 1}}\).
d) Ta có: 1 + 2x + x2 = (1 + x)2;
5x2 ‒ 5 = 5(x2 ‒ 1) = 5(x ‒ 1)(x + 1).
Chọn MTC là: 5(x ‒ 1)(x + 1)2
Nhân tử phụ của hai mẫu thức 1 + 2x + x2 và 5x2 ‒ 5 lần lượt là: 5(x ‒ 1) và x + 1.
Vậy: \(\frac{x}{{1 + 2x + {x^2}}} = \frac{{x.5.\left( {x - 1} \right)}}{{\left( {1 + 2x + {x^2}} \right).5.\left( {x - 1} \right)}} = \frac{{5x\left( {x - 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\)
\(\frac{3}{{5{x^2} - 5}} = \frac{{3.\left( {x + 1} \right)}}{{5\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 1} \right)}} = \frac{{3\left( {x + 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\).
Lời giải
Lời giải
a) Ta có: x2y3.2 = 2x2y3 và 2x2y2.y = 2x2y3 nên x2y3.2 = 2x2y2.y
Vậy \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\).
b) Ta có:
(x2 ‒ x ‒ 2).(x ‒ 1) = x3 ‒ x2 ‒ x2 + x ‒ 2x + 2 = x3 ‒ 2x2 ‒ x + 2
Và (x2 ‒ 3x + 2)(x + 1) = x3 + x2 ‒ 3x2 ‒ 3x + 2x + 2 = x3 ‒ 2x2 ‒ x + 2
Nên (x2 ‒ x ‒ 2).(x ‒ 1) = (x2 ‒ 3x + 2)(x + 1)
Vậy \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\).
c) Ta có:
(x + 3)(x2 ‒ 3x + 9) = x3 + 33 = x3 + 27
Và (x3 + 27).1 = x3 + 27
Nên (x2 ‒ 3x + 9)(x + 3) = (x3 + 27).1
Vậy \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.