Câu hỏi:
13/07/2024 3,052Rút gọn mỗi phân thức sau:
a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\);
b) \(\frac{{x - y}}{{y - x}}\);
c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\);
d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
a) Điều kiện xác định của phân thức là x ≠ 0 và y ≠ 0.
Ta có: \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}} = \frac{{5.5.{x^2}.y.{y^2}}}{{5.7.x.{x^2}.{y^2}}} = \frac{{5y}}{{7x}}\).
b) Điều kiện xác định của phân thức là y ‒ x ≠ 0.
Ta có: \(\frac{{x - y}}{{y - x}} = \frac{{ - \left( {y - x} \right)}}{{y - x}} = - 1\).
c) Điều kiện xác định của phân thức là x ≠ 0 và y ≠ 0.
Ta có: \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}} = \frac{{\left( { - 1} \right) \cdot {x^5}{y^2}}}{{\left( { - 1} \right) \cdot {x^2}{y^3}}} = \frac{{{x^3}}}{y}\).
d) Điều kiện xác định của phân thức là x3 ‒ 4x2 + 4x ≠ 0.
Ta có: \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}} = \frac{{x\left( {x - 2} \right)}}{{x\left( {{x^2} - 4x + 4} \right)}} = \frac{{x\left( {x - 2} \right)}}{{x{{\left( {x - 2} \right)}^2}}} = \frac{1}{{x - 2}}\).
Đã bán 212
Đã bán 374
Đã bán 287
Đã bán 361
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
a) \(\frac{2}{{15{x^3}{y^2}}};\frac{y}{{10{x^4}{z^3}}}\) và \(\frac{x}{{20{y^3}z}}\);
b) \(\frac{x}{{2x + 6}}\) và \(\frac{4}{{{x^2} - 9}}\);
c) \(\frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}}\);
d) \(\frac{x}{{1 + 2x + {x^2}}}\) và \(\frac{3}{{5{x^2} - 5}}\).
Câu 2:
Dùng định nghĩa hai phân thức bằng nhau, hãy giải thích vì sao có thể viết:
a) \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\);
b) \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\);
c) \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).
Câu 3:
Tính giá trị của biểu thức:
a) \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}}\) tại x = 1 ; y = 2;
b) \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}}\) tại \(x = \frac{1}{2};y = \frac{1}{5}\);
c) \(C = \frac{{{x^2} - 8x + 7}}{{{x^2} - 1}}\) tại x = –7;
d) \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}}\) tại x = 0,5; y = 0,6.
Câu 4:
Mỗi cặp phân thức sau có bằng nhau không? Vì sao?
a) \(\frac{x}{{5x + 5}}\) và \(\frac{1}{5}\).
b) \(\frac{{ - x}}{{x - 5}}\) và \(\frac{{ - x\left( {x - 5} \right)}}{{{{\left( {x - 5} \right)}^2}}}\).
c) \(\frac{{ - 5}}{{ - x - y}}\) và \(\frac{5}{{x + y}}\).
d) \(\frac{{ - x}}{{{{\left( {x - 3} \right)}^2}}}\) và \(\frac{x}{{{{\left( {3 - x} \right)}^2}}}\).
Câu 5:
Viết điều kiện xác định của mỗi phân thức sau:
a) \(\frac{3}{{2x\left( {5 - x} \right)}}\);
b) \(\frac{{4x}}{{{x^2} - 4}}\);
c) \(\frac{x}{{{y^2} + 2xy}}\);
d) \(\frac{{6,4y}}{{0,4{x^2} + 0,4x}}\).
Câu 6:
Chứng tỏ giá trị của biểu thức sau không phụ thuộc vào giá trị của biến (với \(a\) là một số):
a) \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}}\) (a ≠ 0);
b) \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}}\).
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận