Câu hỏi:
13/07/2024 1,023Thực hiện phép tính:
a) \(\frac{{24{y^5}}}{{7{x^2}}}.\left( { - \frac{{49x}}{{12{y^3}}}} \right)\);
b) \( - \frac{{36{y^3}}}{{15{x^4}}}.\left( { - \frac{{45{x^2}}}{{9{y^3}}}} \right)\);
c) \(\frac{{{x^2} - {y^2}}}{{{x^2}}}.\frac{{{x^4}}}{{{{\left( {x + y} \right)}^2}}}\);
d) \(\frac{{x + 3}}{{{x^2} - 1}}.\frac{{1 - 3x + 3{x^2} - {x^3}}}{{9x + 27}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) \(\frac{{24{y^5}}}{{7{x^2}}}.\left( { - \frac{{49x}}{{12{y^3}}}} \right) = - \frac{{24{y^5}.49x}}{{7{x^2}.12{y^3}}} = - \frac{{14{y^2}}}{x}\).
b) \( - \frac{{36{y^3}}}{{15{x^4}}}.\left( { - \frac{{45{x^2}}}{{9{y^3}}}} \right) = \frac{{36{y^3}.45{x^2}}}{{15{x^4}.9{y^3}}} = \frac{{12}}{{{x^2}}}\).
c) \(\frac{{{x^2} - {y^2}}}{{{x^2}}}.\frac{{{x^4}}}{{{{\left( {x + y} \right)}^2}}} = \frac{{\left( {{x^2} - {y^2}} \right).{x^4}}}{{{x^2}.{{\left( {x + y} \right)}^2}}}\)
\( = \frac{{\left( {x - y} \right)\left( {x + y} \right).{x^4}}}{{{x^2}.{{\left( {x + y} \right)}^2}}} = \frac{{{x^2}\left( {x - y} \right)}}{{x + y}}\).
d) \(\frac{{x + 3}}{{{x^2} - 1}}.\frac{{1 - 3x + 3{x^2} - {x^3}}}{{9x + 27}}\)
\( = \frac{{\left( {x + 3} \right)\left( {1 - 3x + 3{x^2} - {x^3}} \right)}}{{\left( {{x^2} - 1} \right)\left( {9x + 27} \right)}}\)
\( = \frac{{\left( {x + 3} \right){{\left( {1 - x} \right)}^3}}}{{\left( {x - 1} \right)\left( {x + 1} \right).9.\left( {x + 3} \right)}}\)
\( = - \frac{{\left( {x + 3} \right){{\left( {x - 1} \right)}^3}}}{{\left( {x - 1} \right)\left( {x + 1} \right).9.\left( {x + 3} \right)}}\)
\( = - \frac{{{{(x - 1)}^2}}}{{9\left( {x + 1} \right)}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trên một mảnh đất có dạng hình chữ nhật với chiều dài là x (m), chiều rộng là y (m) với x > y > 4, bác An dự định làm một vườn hoa hình chữ nhật và bớt ra một phần đường đi rộng 2 m như ở Hình 3. Viết phân thức biểu thị theo x, y:
a) Tỉ số diện tích của mảnh đất và vườn hoa.
b) Tỉ số chu vi của mảnh đất và vườn hoa.
Câu 2:
Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:
a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\);
b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\);
c) \(P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\).
Câu 3:
Tính một cách hợp lí:
a) \(\frac{{39x + 7}}{{x - 2020}}.\frac{{9x - 20}}{{x + 2022}} - \frac{{39x + 7}}{{x - 2020}}.\frac{{8x - 2042}}{{x + 2022}}\);
b) \(\frac{{{x^2} - 81}}{{{x^2} + 101}}.\left( {\frac{{{x^2} + 101}}{{x - 9}} + \frac{{{x^2} + 101}}{{x + 9}}} \right)\);
c) \(\frac{{{x^2} - 1}}{{x + 100}}.\frac{{2x}}{{x + 2}} + \frac{{1 - {x^2}}}{{x + 100}}.\frac{{x - 100}}{{x + 2}}\).
Câu 4:
Thực hiện phép tính:
a) \(\frac{1}{{{x^2} - x + 1}}:\frac{{x + 1}}{{x - 1}}\)
b) \(\frac{{x + y}}{{2x - y}}:\frac{1}{{x - y}}\)
c) \(\frac{{{x^3}y + x{y^3}}}{{{x^4}y}}:\left( {{x^2} + {y^2}} \right)\)
d) \(\frac{{{x^3} + 8}}{{{x^2} - 2x + 1}}:\frac{{{x^2} + 3x + 2}}{{1 - {x^2}}}\).
Câu 5:
Hai máy bay cùng bay quãng đường 600 km. Biết tốc độ của máy bay thứ hai lớn hơn tốc độ của máy bay thứ nhất là 300 km/h. Gọi x km/h là tốc độ của máy bay thứ nhất (x > 0). Viết phân thức biểu thị theo x:
a) Thời gian máy bay thứ nhất đã bay;
b) Thời gian máy bay thứ hai đã bay;
c) Tỉ số của thời gian máy bay thứ nhất đã bay và thời gian máy bay thứ hai đã bay.
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bài tập Nhân đơn thức với đa thức (có lời giải chi tiết)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
về câu hỏi!