Câu hỏi:
13/07/2024 5,203
Cho hai hàm số y = x + 5 ; y = ‒x + 1.
a) Vẽ đồ thị của hai hàm số đó trên cùng một mặt phẳng toạ độ.
b) Gọi A là giao điểm của hai đường thẳng y = x + 5; y = ‒x + 1; B, C lần lượt là giao điểm của hai đường thẳng đó với trục Ox. Tính diện tích của tam giác ABC (đơn vị đo trên các trục toạ độ là centimét).
Cho hai hàm số y = x + 5 ; y = ‒x + 1.
a) Vẽ đồ thị của hai hàm số đó trên cùng một mặt phẳng toạ độ.
b) Gọi A là giao điểm của hai đường thẳng y = x + 5; y = ‒x + 1; B, C lần lượt là giao điểm của hai đường thẳng đó với trục Ox. Tính diện tích của tam giác ABC (đơn vị đo trên các trục toạ độ là centimét).
Quảng cáo
Trả lời:
Lời giải
a) • Xét hàm số: y = x + 5
Với x = 0, ta có y = 5;
Với y = 0, ta có x = ‒5.
Do đó, đồ thị của hàm số y = x + 5 đi qua 2 điểm (0; 5) và (‒5; 0).
• Xét hàm số: y = ‒x + 1
Với x = 0, ta có y = 1;
Với y = 0, ta có x = 1.
Do đó, đồ thị của hàm số y = ‒x + 1 đi qua 2 điểm (0; 1) và (1; 0).

b)

Gọi H là hình chiếu của A trên trục Ox.
Ta có A(‒2; 3), B(‒5; 0), C(1; 0), H(‒2; 0). Khi đó AH = 3 cm, BC = 6 cm.
Vậy diện tích của tam giác ABC là: \(\frac{1}{2} \cdot 3 \cdot 6 = 9\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Do đường thẳng d: y = ax + b (a ≠ 0) song song với đường thẳng \(d':y = - 3x - \frac{2}{3}\) nên a = ‒3 (thoả mãn) và \(b \ne - \frac{2}{3}\).
Mà đường thẳng y = ax + b đi qua điểm A(‒2; ‒4) suy ra ‒4 = ‒3.(‒2) + b hay b = ‒10 (thoả mãn).
Do đó, đường thẳng cần tìm là y = ‒3x ‒ 10.
b) Đường thẳng d có hệ số góc bằng ‒3 nên y = ‒3x + b.
Với y = 0 vào y = 2x – 2 ta được 2x – 2 = 0, suy ra x = 1.
Do đó B là giao điểm của đường thẳng y = 2x – 2 với trục hoành nên B(1; 0).
Do đường thẳng d đi qua điểm B(1; 0) nên thay x = 1, y = 0 vào y = ‒3x + b ta có:
0 = ‒3.1 + b
Suy ra b = 3
Từ đó, ta tìm được d: y = –3x + 3.
Lời giải
Lời giải
a) Ta có: A(‒2; 0), B(0; 4).
b) Ta vẽ các điểm M, N lần lượt là trung điểm của OA, OB như hình vẽ:

Từ đó ta có: M(‒1; 0), N(0; 2).
c) Do A, B lần lượt nằm trên Ox, Oy nên tam giác OAB vuông tại O.
Do đó diện tích của tam giác OAB là: \({S_{\Delta OAB}} = \frac{1}{2} \cdot OA \cdot OB\).
Mà M, N lần lượt là trung điểm của OA, OB nên \(OM = \frac{1}{2}OA,ON = \frac{1}{2}OB\).
Do M, N lần lượt nằm trên Ox, Oy nên tam giác OMN vuông tại O nên ta có diện tích của tam giác OMN bằng:
\({S_{\Delta OMN}} = \frac{1}{2} \cdot OM \cdot ON = \frac{1}{2} \cdot \frac{1}{2}OA \cdot \frac{1}{2}OB = \frac{1}{4} \cdot \frac{1}{2} \cdot OA.OB = \frac{1}{4}{S_{\Delta OAB}}\)
Vậy tỉ số phần trăm của diện tích tam giác \(OMN\) và diện tích tam giác \(OAB\) là:
\(\frac{{\frac{1}{4}{S_{\Delta OAB}}}}{{{S_{\Delta OAB}}}}.100\% = 25\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Toàn Ngô văn
Đc