Câu hỏi:

13/07/2024 2,634

Hiện tại, cô Hạnh đã tiết kiệm được 500 triệu đồng. Để thực hiện dự định mua một căn chung cư có giá trị 2,6 tỉ đồng, cô Hạnh đã lên kế hoạch hằng tháng tiết kiệm 15 triệu đồng. Gọi y (triệu đồng) là số tiền cô Hạnh tiết kiệm được sau x (tháng) kể từ hiện tại.

a) Viết công thức tính y theo x. Hỏi y có phải là hàm số bậc nhất của x hay không?

b) Hỏi sau bao lâu kể từ hiện tại thì cô Hạnh có thể mua được căn hộ chung cư đó bằng tiền tiết kiệm?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Công thức tính y theo x là: y = 15x + 500. Vậy y là hàm số bậc nhất của x.

b) Đổi 2,6 tỉ đồng = 2 600 triệu đồng.

Để cô Hạnh mua đuộc căn hộ chung cư đó thì số tiền tiết kiệm được là 2 600 đồng.

Do đó 15x + 500 = 2600

Suy ra = 140.

Mà 140 tháng = 11 năm + 8 tháng, nên sau 11 năm 8 tháng kể từ hiện tại thì cô Hạnh có thể mua được căn hộ chung cư đó bằng tiền tiết kiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xác định đường thẳng d: y = ax + b (a ≠ 0) trong mỗi trường hợp sau:

a) Đường thẳng d song song với đường thẳng \(d':y = - 3x - \frac{2}{3}\) và đi qua điểm A(‒2; ‒4).

b) Đường thẳng d đi qua điểm B và có hệ số góc bằng ‒3 . Biết B là giao điểm của đường thẳng y = 2x 2 với trục hoành.

Xem đáp án » 13/07/2024 5,644

Câu 2:

Cho hai hàm số y = x + 5 ; y = ‒x + 1.

a) Vẽ đồ thị của hai hàm số đó trên cùng một mặt phẳng toạ độ.

b) Gọi A là giao điểm của hai đường thẳng y = x + 5; y = ‒x + 1; B, C lần lượt là giao điểm của hai đường thẳng đó với trục Ox. Tính diện tích của tam giác ABC (đơn vị đo trên các trục toạ độ là centimét).

Xem đáp án » 13/07/2024 3,092

Câu 3:

Trong mặt phẳng toạ độ Oxy, cho đồ thị của hàm số y = 2x + 4 (Hình 11).

Media VietJack

a) Gọi A, B lần lượt là giao điểm của trục Ox, Oy với đồ thị hàm số y = 2x + 4. Xác định toạ độ các điểm A, B.

b) Gọi M, N lần lượt là trung điểm của OA, OB. Xác định toạ độ các điểm M, N.

c) Tính tỉ số phần trăm của diện tích tam giác OMN và diện tích tam giác OAB.

Xem đáp án » 13/07/2024 3,040

Câu 4:

Cho đường thẳng \(d:y = \left( {m - \frac{1}{2}} \right)x + 2m - 2\) với \(m \ne \frac{1}{2}\). Tìm giá trị của m để:

a) Đường thẳng d song song với đường thẳng \({d_1}:y = \frac{1}{2}mx - 2\) với m 0;

b) Đường thẳng d trùng với đường thẳng \({d_2}:y = x - \frac{2}{3}m + 2\);

c) Đường thẳng d và đường thẳng \({d_3}:y = \sqrt 2 x - m + 2\) cắt nhau tại một điểm nằm trên trục Oy.

Xem đáp án » 13/07/2024 2,727

Câu 5:

Trong mặt phẳng toạ độ Oxy, cho các điểm A(2; 3), B(2 ; ‒4). Tìm toạ độ điểm C sao cho C nằm trên trục Ox và CA + CB đạt giá trị nhỏ nhất.

Xem đáp án » 13/07/2024 2,495

Câu 6:

Cho đồ thị của hàm số y = ax + b đi qua điểm M(1; 4) và song song với đường thẳng y = 2x + 1. Tích a.b bằng:

A. 6.

B. 4.

C. 3.

D. 2.

Xem đáp án » 13/07/2024 1,972

Bình luận


Bình luận