Câu hỏi:
12/07/2024 1,070Dùng đồ thị hàm số y = sin x, y = cos x để xác định số nghiệm của phương trình:
\(\sqrt 2 \)cos x + 1 = 0 trên khoảng (– 4π; 0).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(\sqrt 2 \)cos x + 1 = 0 \( \Leftrightarrow \cos x = - \frac{1}{{\sqrt 2 }}\).
Do đó, số nghiệm của phương trình \(\sqrt 2 \)cos x + 1 = 0 trên đoạn (– 4π; 0) bằng số giao điểm của đồ thị hàm số y = cos x trên đoạn (– 4π; 0) và đường thẳng \(y = - \frac{1}{{\sqrt 2 }}\).
Dựa vào đồ thị, ta thấy đồ thị hàm số y = cos x trên đoạn (– 4π; 0) và đường thẳng \(y = - \frac{1}{{\sqrt 2 }}\) cắt nhau tại 4 điểm phân biệt.
Vậy phương trình \(\sqrt 2 \)cos x + 1 = 0 có 4 nghiệm trên khoảng (– 4π; 0).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình sin x = 1 có các nghiệm là:
A. \(x = \frac{\pi }{2} + k2\pi \,\left( {k \in \mathbb{Z}} \right)\).
B. \(x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).
C. \(x = \pi + k2\pi \left( {k \in \mathbb{Z}} \right)\).
D. \(x = k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 2:
Phương trình tan x = − 1 có các nghiệm là:
A. \(x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
D. \(x = - \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 3:
Số nghiệm của phương trình sin x = 0,3 trên khoảng (0; 4π) là:
A. 2.
B. 3.
C. 4.
D. 6.
Câu 4:
Phương trình \(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right)\) có các nghiệm là:
A. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{4} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
C. \[\left[ \begin{array}{l}x = - \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\].
D. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 5:
Giải phương trình:
\(\cot \left( {x + \frac{\pi }{5}} \right) = 1\).
Câu 6:
Giá trị của m để phương trình cos x = m có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\) là:
A. 0 ≤ m < 1.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 0 < m < 1.
Câu 7:
Phương trình \(\cos x = - \frac{1}{2}\) có các nghiệm là:
A. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(\left[ \begin{array}{l}x = \frac{{5\pi }}{6} + k2\pi \\x = - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
D. \(\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
75 câu trắc nghiệm Giới hạn cơ bản (P1)
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
về câu hỏi!