Câu hỏi:

12/07/2024 1,304 Lưu

Dùng đồ thị hàm số y = sin x, y = cos x để xác định số nghiệm của phương trình:

\(\sqrt 2 \)cos x + 1 = 0 trên khoảng (– 4π; 0).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\sqrt 2 \)cos x + 1 = 0 \( \Leftrightarrow \cos x = - \frac{1}{{\sqrt 2 }}\).

Do đó, số nghiệm của phương trình \(\sqrt 2 \)cos x + 1 = 0 trên đoạn (– 4π; 0) bằng số giao điểm của đồ thị hàm số y = cos x trên đoạn (– 4π; 0) và đường thẳng \(y = - \frac{1}{{\sqrt 2 }}\).

Dùng đồ thị hàm số y = sin x, y = cos x để xác định số nghiệm căn bậc hai 2 cos x (ảnh 1)

Dựa vào đồ thị, ta thấy đồ thị hàm số y = cos x trên đoạn (– 4π; 0) và đường thẳng \(y = - \frac{1}{{\sqrt 2 }}\) cắt nhau tại 4 điểm phân biệt.

Vậy phương trình \(\sqrt 2 \)cos x + 1 = 0 có 4 nghiệm trên khoảng (– 4π; 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP