Câu hỏi:
12/07/2024 1,377Mực nước cao nhất tại một cảng biển là 16 m khi thủy triều lên cao và sau 12 giờ khi thủy triều xuống thấp thì mực nước thấp nhất là 10 m. Đồ thị ở Hình 15 mô tả sự thay đổi chiều cao của mực nước tại cảng trong vòng 24 giờ tính từ lúc nửa đêm. Biết chiều cao của mực nước h (m) theo thời gian t (h) (0 ≤ t ≤ 24) được cho bởi công thức \(h = m + a\cos \left( {\frac{\pi }{{12}}t} \right)\) với m, a là các số thực dương cho trước.
Tìm thời điểm trong ngày khi chiều cao của mực nước là 11,5 m.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Từ câu a) ta có công thức \(h = 13 + 3\cos \left( {\frac{\pi }{{12}}t} \right)\).
Do chiều cao của mực nước là 11,5 m nên \(13 + 3\cos \left( {\frac{\pi }{{12}}t} \right) = 11,5\)\( \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t} \right) = - \frac{1}{2}\)
\( \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t} \right) = \cos \left( {\frac{{2\pi }}{3}} \right)\)
\[ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{12}}t = \frac{{2\pi }}{3} + k2\pi \\\frac{\pi }{{12}}t = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}t = 8 + k24\\t = - 8 + k24\end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
Mà 0 ≤ t ≤ 24 nên t = 8 và t = 16.
Vậy ứng với hai thời điểm trong ngày là t = 8 (h) và t = 16 (h) thì chiều cao của mực nước là 11,5 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình sin x = 1 có các nghiệm là:
A. \(x = \frac{\pi }{2} + k2\pi \,\left( {k \in \mathbb{Z}} \right)\).
B. \(x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).
C. \(x = \pi + k2\pi \left( {k \in \mathbb{Z}} \right)\).
D. \(x = k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 2:
Phương trình tan x = − 1 có các nghiệm là:
A. \(x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
D. \(x = - \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 3:
Số nghiệm của phương trình sin x = 0,3 trên khoảng (0; 4π) là:
A. 2.
B. 3.
C. 4.
D. 6.
Câu 4:
Phương trình \(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right)\) có các nghiệm là:
A. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{4} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
C. \[\left[ \begin{array}{l}x = - \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\].
D. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 5:
Giải phương trình:
\(\cot \left( {x + \frac{\pi }{5}} \right) = 1\).
Câu 6:
Giá trị của m để phương trình cos x = m có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\) là:
A. 0 ≤ m < 1.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 0 < m < 1.
Câu 7:
Tìm góc lượng giác \(x\) sao cho:
sin(x – 60°) = \( - \frac{{\sqrt 3 }}{2}\);
về câu hỏi!