Câu hỏi:

12/07/2024 1,845

Mực nước cao nhất tại một cảng biển là 16 m khi thủy triều lên cao và sau 12 giờ khi thủy triều xuống thấp thì mực nước thấp nhất là 10 m. Đồ thị ở Hình 15 mô tả sự thay đổi chiều cao của mực nước tại cảng trong vòng 24 giờ tính từ lúc nửa đêm. Biết chiều cao của mực nước h (m) theo thời gian t (h) (0 ≤ t ≤ 24) được cho bởi công thức \(h = m + a\cos \left( {\frac{\pi }{{12}}t} \right)\) với m, a là các số thực dương cho trước.

Tìm thời điểm trong ngày khi chiều cao của mực nước là 11,5 m.

Mực nước cao nhất tại một cảng biển là 16 m Tìm thời điểm trong ngày khi chiều cao của mực nước là 11,5 m (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ câu a) ta có công thức \(h = 13 + 3\cos \left( {\frac{\pi }{{12}}t} \right)\).

Do chiều cao của mực nước là 11,5 m nên \(13 + 3\cos \left( {\frac{\pi }{{12}}t} \right) = 11,5\)\( \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t} \right) = - \frac{1}{2}\)

\( \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t} \right) = \cos \left( {\frac{{2\pi }}{3}} \right)\)

\[ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{12}}t = \frac{{2\pi }}{3} + k2\pi \\\frac{\pi }{{12}}t = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}t = 8 + k24\\t = - 8 + k24\end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

Mà 0 ≤ t ≤ 24 nên t = 8 và t = 16.

Vậy ứng với hai thời điểm trong ngày là t = 8 (h) và t = 16 (h) thì chiều cao của mực nước là 11,5 m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình sin x = 1 có các nghiệm là:

A. \(x = \frac{\pi }{2} + k2\pi \,\left( {k \in \mathbb{Z}} \right)\).

B. \(x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).

C. \(x = \pi + k2\pi \left( {k \in \mathbb{Z}} \right)\).

D. \(x = k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 24,038

Câu 2:

Phương trình tan x = − 1 có các nghiệm là:

A. \(x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

B. \(x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

C. \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

D. \(x = - \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 10,032

Câu 3:

Số nghiệm của phương trình sin x = 0,3 trên khoảng (0; 4π) là:

A. 2.

B. 3.

C. 4.

D. 6.

Xem đáp án » 13/07/2024 6,184

Câu 4:

Phương trình \(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right)\) có các nghiệm là:

A. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{4} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

B. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

C. \[\left[ \begin{array}{l}x = - \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\].

D. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 5,405

Câu 5:

Giải phương trình:

\(\cot \left( {x + \frac{\pi }{5}} \right) = 1\).

Xem đáp án » 13/07/2024 3,570

Câu 6:

Giá trị của m để phương trình cos x = m có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\) là:

A. 0 ≤ m < 1.

B. 0 ≤ m ≤ 1.

C. 0 < m ≤ 1.

D. 0 < m < 1.

Xem đáp án » 13/07/2024 2,968

Câu 7:

Phương trình \(\cos x = - \frac{1}{2}\) có các nghiệm là:

A. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

B. \(\left[ \begin{array}{l}x = \frac{{5\pi }}{6} + k2\pi \\x = - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

C. \(\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

D. \(\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 2,908