Câu hỏi:
12/07/2024 705Tổng 20 số tự nhiên liên tiếp chia hết cho 3 tính từ số 3 là:
A. 1 320.
B. 660.
C. 630.
D. 1 260.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
20 số tự nhiên liên tiếp chia hết cho 3 tính từ số 3 lập thành một cấp số cộng với số hạng đầu u1 = 3 và công sai d = 3.
Khi đó, tổng của 20 số này là: \({S_{20}} = \frac{{\left[ {2{u_1} + \left( {20 - 1} \right)d} \right].20}}{2} = \frac{{\left( {2.3 + 19.3} \right).20}}{2} = 630\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.
Tìm công thức của vn, un tính theo n.
Câu 2:
Cho dãy số (un) biết un = 5n – n. Số hạng un + 1 là:
A. 5n + 1 – n – 1.
B. 5n + 1 – n + 1.
C. 5n – n + 1.
D. 5n – n – 1.
Câu 3:
Cho dãy số (un) biết u1 = 2, \({u_n} = \frac{1}{3}\left( {{u_{n - \,1}} + 1} \right)\) với n ≥ 2. Số hạng u4 bằng:
A. u4 = 1.
B. \({u_4} = \frac{2}{3}\).
C. \({u_4} = \frac{{14}}{{27}}\).
D. \({u_4} = \frac{5}{9}\).
Câu 4:
Cho dãy số (un) có tổng n số hạng đầu là \({S_n} = \frac{{n\left( { - 1 - 5n} \right)}}{2}\) với n ∈ ℕ*.
Tìm công thức của số hạng tổng quát un.
Câu 5:
Cho dãy số (un) biết \({u_n} = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6}} \right]\).
Tính tổng 27 số hạng đầu của dãy số.
Câu 6:
Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.
Đặt vn = un + 1 – un với n ∈ ℕ*. Chứng minh rằng dãy số (vn) là cấp số cộng.
về câu hỏi!