Câu hỏi:

18/07/2023 1,111

Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.

Đặt vn = un + 1 – un với n *. Chứng minh rằng dãy số (vn) là cấp số cộng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ công thức un + 1 = 2un – un – 1 + 2 suy ra un + 1 – un = un – un – 1 + 2.

Mà vn = un + 1 – un và vn – 1 = un – 1 + 1 – un – 1 = un – un – 1.

Do đó, vn = vn – 1 + 2 với n ≥ 2.

Vậy dãy số (vn) là một cấp số cộng có số hạng đầu v1 = u2 – u1 = 1 và công sai d = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ kết quả câu b, ta có: vn = v1 + (n – 1)d = 1 + (n – 1) . 2 = – 1 + 2n.

Lại có: v1 = u2 – u1

          v2 = u3 – u2

          ...

          vn – 2 = un – 1 – un – 2

          vn – 1 = un – un – 1

Cộng theo từng vế của n − 1 đẳng thức trên, ta có:

v1 + v2 + ... + vn – 2 + vn – 1 = – u1 + un  

          \( \Leftrightarrow \frac{{\left( {{v_1} + {v_{n - 1}}} \right)\left( {n - 1} \right)}}{2} = - 1 + {u_n}\)

          \( \Leftrightarrow \frac{{\left[ {1 + \left( { - 1 + 2\left( {n - 1} \right)} \right)} \right]\left( {n - 1} \right)}}{2} = - 1 + {u_n}\)

          (n – 1)2 = un – 1

          un = 1 + (n – 1)2.

Vậy un = 1 + (n – 1)2 và vn = – 1 + 2n với mọi n *.

Lời giải

Đáp án đúng là: A

Ta có: un + 1 = 5n + 1 – (n + 1) = 5n + 1 – n – 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP