Câu hỏi:
18/07/2023 832Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.
Đặt vn = un + 1 – un với n ∈ ℕ*. Chứng minh rằng dãy số (vn) là cấp số cộng.Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Từ công thức un + 1 = 2un – un – 1 + 2 suy ra un + 1 – un = un – un – 1 + 2.
Mà vn = un + 1 – un và vn – 1 = un – 1 + 1 – un – 1 = un – un – 1.
Do đó, vn = vn – 1 + 2 với n ≥ 2.
Vậy dãy số (vn) là một cấp số cộng có số hạng đầu v1 = u2 – u1 = 1 và công sai d = 2.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.
Tìm công thức của vn, un tính theo n.
Câu 2:
Cho dãy số (un) biết un = 5n – n. Số hạng un + 1 là:
A. 5n + 1 – n – 1.
B. 5n + 1 – n + 1.
C. 5n – n + 1.
D. 5n – n – 1.
Câu 3:
Cho dãy số (un) biết u1 = 2, \({u_n} = \frac{1}{3}\left( {{u_{n - \,1}} + 1} \right)\) với n ≥ 2. Số hạng u4 bằng:
A. u4 = 1.
B. \({u_4} = \frac{2}{3}\).
C. \({u_4} = \frac{{14}}{{27}}\).
D. \({u_4} = \frac{5}{9}\).
Câu 4:
Cho dãy số (un) có tổng n số hạng đầu là \({S_n} = \frac{{n\left( { - 1 - 5n} \right)}}{2}\) với n ∈ ℕ*.
Tìm công thức của số hạng tổng quát un.
Câu 5:
Cho dãy số (un) biết \({u_n} = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6}} \right]\).
Tính tổng 27 số hạng đầu của dãy số.
Câu 6:
Cho cấp số nhân (un) có tất cả các số hạng đều không âm và u2 = 6, u4 = 24. Tổng 10 số hạng đầu của (un) là:
A. 3(1 – 210).
B. 3(29 – 1).
C. 3(210 – 1).
D. 3(1 – 29).
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
75 câu trắc nghiệm Giới hạn cơ bản (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
về câu hỏi!