Câu hỏi:
12/07/2024 360Cho dãy số (un), biết u1 = – 2, \({u_{n + 1}} = \frac{{n + 1}}{{2n}}{u_n}\) với n ∈ ℕ*. Đặt \({v_n} = \frac{{{u_n}}}{n}\) với n ∈ ℕ*.
Tìm công thức của un tính theo n.
Quảng cáo
Trả lời:
Từ kết quả của câu a) suy ra \({v_n} = {v_1}.{q^{n - 1}} = \left( { - 2} \right).{\left( {\frac{1}{2}} \right)^{n - 1}} = - {\left( {\frac{1}{2}} \right)^{n - 2}}\).
Từ \({v_n} = \frac{{{u_n}}}{n}\), suy ra \({u_n} = n.{v_n} = - n.{\left( {\frac{1}{2}} \right)^{n - 2}}\) với mọi n ≥ 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.
Tìm công thức của vn, un tính theo n.
Câu 2:
Cho dãy số (un) biết un = 5n – n. Số hạng un + 1 là:
A. 5n + 1 – n – 1.
B. 5n + 1 – n + 1.
C. 5n – n + 1.
D. 5n – n – 1.
Câu 3:
Cho dãy số (un) biết u1 = 2, \({u_n} = \frac{1}{3}\left( {{u_{n - \,1}} + 1} \right)\) với n ≥ 2. Số hạng u4 bằng:
A. u4 = 1.
B. \({u_4} = \frac{2}{3}\).
C. \({u_4} = \frac{{14}}{{27}}\).
D. \({u_4} = \frac{5}{9}\).
Câu 4:
Cho dãy số (un) có tổng n số hạng đầu là \({S_n} = \frac{{n\left( { - 1 - 5n} \right)}}{2}\) với n ∈ ℕ*.
Tìm công thức của số hạng tổng quát un.
Câu 5:
Cho dãy số (un) biết \({u_n} = \cos \left[ {\left( {2n + 1} \right)\frac{\pi }{6}} \right]\).
Tính tổng 27 số hạng đầu của dãy số.
Câu 6:
Cho cấp số nhân (un) có tất cả các số hạng đều không âm và u2 = 6, u4 = 24. Tổng 10 số hạng đầu của (un) là:
A. 3(1 – 210).
B. 3(29 – 1).
C. 3(210 – 1).
D. 3(1 – 29).
Câu 7:
Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.
Đặt vn = un + 1 – un với n ∈ ℕ*. Chứng minh rằng dãy số (vn) là cấp số cộng.10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận