Câu hỏi:
13/07/2024 2,729Cho hàm số y = f(x) xác định trên khoảng (a ; + ∞). Phát biểu nào sau đây là đúng?
A. Nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
B. Nếu với dãy số (xn) bất kì, xn < a và xn → +∞, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
C. Nếu với dãy số (xn) bất kì, xn > a, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
D. Nếu với dãy số (xn) bất kì, xn > a và xn → L, ta có f(xn) →+∞ thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Theo lí thuyết, ta có: Cho hàm số y = f(x) xác định trên khoảng (a ; + ∞), nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Quan sát đồ thị hàm số ở Hình 2 và cho biết các giới hạn sau: \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right);\,\mathop {\lim }\limits_{x \to - \infty } f\left( x \right);\,\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right);\,\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)\).
Câu 2:
Với c, k là các hằng số và k nguyên dương thì
A. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = 0\).
B. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = + \infty \).
C. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = - \infty \).
D. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = - \infty \).
Câu 3:
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t2 – t3 (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t1, t2 là \({V_{tb}} = \frac{{g\left( {{t_2}} \right) - g\left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\). Tính \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và cho biết ý nghĩa của kết quả tìm được.
Câu 4:
Cho hàm số y = f(x) xác định trên khoảng (x0; b). Phát biểu nào sau đây là đúng?
A. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
B. Nếu với dãy số (xn) bất kì, xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
C. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → L, ta có f(xn) → x0 thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
D. Nếu với dãy số (xn) bất kì, xn < x0 và xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
Câu 5:
Cho \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 4}}{{x - 1}} = 2\). Tính:
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\);
Câu 6:
Sử dụng định nghĩa, chứng minh rằng:
\(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = - 4\).
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
về câu hỏi!