Câu hỏi:
12/07/2024 1,808Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t2 – t3 (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t1, t2 là \({V_{tb}} = \frac{{g\left( {{t_2}} \right) - g\left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\). Tính \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và cho biết ý nghĩa của kết quả tìm được.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có g(10) = 45 . 102 – 103.
Khi đó \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\)\[ = \mathop {\lim }\limits_{t \to 10} \frac{{45{t^2} - {t^3} - {{45.10}^2} - {{10}^3}}}{{t - 10}}\]
\[ = \mathop {\lim }\limits_{t \to 10} \frac{{\left( {45{t^2} - {{45.10}^2}} \right) - \left( {{t^3} - {{10}^3}} \right)}}{{t - 10}}\]
\( = \mathop {\lim }\limits_{t \to 10} \frac{{45\left( {t - 10} \right)\left( {t + 10} \right) - \left( {t - 10} \right)\left( {{t^2} + 10t + 100} \right)}}{{t - 10}}\)
\[ = \mathop {\lim }\limits_{t \to 10} \frac{{\left( {t - 10} \right)\left[ {45\left( {t + 10} \right) - \left( {{t^2} + 10t + 100} \right)} \right]}}{{t - 10}}\]
\[ = \mathop {\lim }\limits_{t \to 10} \left( { - {t^2} + 35t + 350} \right) = 600\].
Vậy \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) = 600.
Từ kết quả trên, ta thấy tốc độ tăng người bệnh ngay tại thời điểm t = 10 ngày là 600 người/ngày.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) xác định trên khoảng (a ; + ∞). Phát biểu nào sau đây là đúng?
A. Nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
B. Nếu với dãy số (xn) bất kì, xn < a và xn → +∞, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
C. Nếu với dãy số (xn) bất kì, xn > a, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
D. Nếu với dãy số (xn) bất kì, xn > a và xn → L, ta có f(xn) →+∞ thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
Câu 2:
Cho hàm số y = f(x) xác định trên khoảng (x0; b). Phát biểu nào sau đây là đúng?
A. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
B. Nếu với dãy số (xn) bất kì, xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
C. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → L, ta có f(xn) → x0 thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
D. Nếu với dãy số (xn) bất kì, xn < x0 và xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
Câu 3:
Quan sát đồ thị hàm số ở Hình 2 và cho biết các giới hạn sau: \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right);\,\mathop {\lim }\limits_{x \to - \infty } f\left( x \right);\,\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right);\,\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)\).
Câu 4:
Cho \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 4}}{{x - 1}} = 2\). Tính:
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\);
Câu 5:
Câu 6:
Phát biểu nào sau đây là đúng?
A. Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L \).
B. Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì L ≥ 0.
c. Nếu f(x) ≥ 0 và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì L ≥ 0 và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L \).
D. Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì L ≥ 0 và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L \).
về câu hỏi!