Hàm số nào sau đây không liên tục trên tập xác định của nó?
A. y = x.
B. \(y = \frac{1}{x}\).
C. y = sin x.
D. \(y = \left\{ \begin{array}{l}0\,\,\,\,\,n\^e 'u\,\,x < 0\\1\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\end{array} \right.\).
Hàm số nào sau đây không liên tục trên tập xác định của nó?
A. y = x.
B. \(y = \frac{1}{x}\).
C. y = sin x.
D. \(y = \left\{ \begin{array}{l}0\,\,\,\,\,n\^e 'u\,\,x < 0\\1\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\end{array} \right.\).
Quảng cáo
Trả lời:
- Các hàm số y = x, y = sin x liên tục trên ℝ.
- Hàm số \(y = \frac{1}{x}\) liên tục trên các khoảng xác định của nó là (–∞; 0) và (0; +∞).
- Xét hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}0\,\,\,\,\,n\^e 'u\,\,x < 0\\1\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\end{array} \right.\) có tập xác định D = ℝ.
Xét tại x = 0, ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 1,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 0\).
Suy ra không tồn tại \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\). Vậy hàm số này không liên tục tại x = 0.
Do vậy hàm số \(y = \left\{ \begin{array}{l}0\,\,\,\,\,n\^e 'u\,\,x < 0\\1\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\end{array} \right.\) không liên tục trên tập xác định của nó.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Với x ≠ 2 thì \(f\left( x \right) = \frac{{{x^2} - 4}}{{x - 2}}\) liên tục trên hai khoảng (–∞; 2) và (2; +∞).
Ta có: f(2) = a; \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 2} \right) = 4\].
Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 2.
Khi đó \[f\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} f\left( x \right)\] hay a = 4.
Vậy hàm số liên tục trên ℝ khi a = 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.