Câu hỏi:
26/07/2023 317
Cho hàm số y = – x3 + (2m + 1)x2 – (m2 – 3m + 2)x – 4 (Cm) với m là tham số
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1.
Cho hàm số y = – x3 + (2m + 1)x2 – (m2 – 3m + 2)x – 4 (Cm) với m là tham số
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) Với m = 1 ta có
y = – x3 + (2 . 1 + 1)x2 – (12 – 3 . 1 + 2)x – 4
y = – x3 + 3x2 – 4
Tập xác định D = ℝ
Ta có:
y’ = – 3x2 + 6x = 0
Ta có bảng biến thiên

Tính đồng biến trên khoảng (0; 2) và nghịch biến trên các khoảng (–∞; 0) và (2;+∞)
Điểm cực đại (2; 0) và điểm cực tiểu (0; 4)
Đồ thị hàm số nhận (1; –2) làm tâm đối xứng
Ta có đồ thị hàm số

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A

Gọi M là trung điểm của BC
Suy ra AM là trung tuyến của tam giác ABC
Do đó
Mà tam giác ABC đều nên AM ⊥ BC
Mà SA ⊥ BC nên BC ⊥ (SAM)
Suy ra (SBC) ⊥ (SAM)
Ta có SA ⊥ (ABC)
Suy ra (SAM) ⊥ (ABC)
Do đó góc giữa (SBC) và (ABC) là
Xét tam giác SAM vuông tại A có
Nên tam giác SAM vuông cân tại A
Suy ra
Ta có: .
Vậy ta chọn đáp án A.
Lời giải
Điều kiện x > 0
Áp dụng công thức đổi cơ số, ta có:
Ta có:
Do đó từ phương trình trên, ta phải có log2x = 0 hay x = 20 = 1
Vậy phương trình có nghiệm duy nhất x = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.