Câu hỏi:
26/07/2023 209Tìm x, y, z thỏa mãn: x2 + y2 + 2z2 + xy + 2yz + 2zx + x + y + 1 = 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
x2 + y2 + 2z2 + xy + 2yz + 2zx + x + y + 1 = 0
⇔ 2(x2 + y2 + 2z2 + xy + 2yz + 2zx + x + y + 1) = 0
⇔ 2x2 + 2y2 + 4z2 + 2xy + 4yz + 4zx + 2x + 2y + 2 = 0
⇔ (x2 + 2xy + y2) + 4z(x + y) + 4z2 + (x2 + 2x + 1) + (y2 + 2y + 1) = 0
⇔ (x + y)2 + 4z(x + y) + 4z2 + (x + 1)2 + (y + 1)2 = 0
⇔ (x + y + 2z)2 + (x + 1)2 + (y + 1)2 = 0
Vì (x + y + 2z)2 ≥ 0 với mọi x, y, z
(x + 1)2 ≥ 0 với mọi x
(y + 1)2 ≥ 0 với mọi y
Nên (x + y + 2z)2 + (x + 1)2 + (y + 1)2 ≥ 0 với mọi x, y, z
Suy ra
Vậy x = –1, y = –1, z = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; –1; 3) và hai đường thẳng . Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2.
Câu 3:
Tìm tất cả các giá trị thực của tham số m để phương trình x3 – 3mx + 2 = 0 có nghiệm duy nhất
Câu 7:
b) Tìm m để đồ thị hàm số (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung.
về câu hỏi!