Câu hỏi:
26/07/2023 275Cho hàm số y = – x3 + 3mx2 – 3m – 1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có:
y’ = – 3x2 + 6mx = – 3x(x – 2m)
Để đồ thị hàm số có 2 điểm cực trị thì m ≠ 0
Khi đó A(0; – 3m – 1) và B(2m; 4m3 – 3m – 1) là hai điểm cực trị của đồ thị hàm số
Suy ra trung điểm I của AB là I(m; 2m3 – 3m – 1)
Và
Đường thẳng d có 1 vectơ chỉ phương là
Để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d
Vậy ta chọn đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; –1; 3) và hai đường thẳng . Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2.
Câu 3:
Tìm tất cả các giá trị thực của tham số m để phương trình x3 – 3mx + 2 = 0 có nghiệm duy nhất
về câu hỏi!