Câu hỏi:

26/07/2023 388

Cho hàm số y = – x3 + 3mx2 – 3m – 1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có:

y’ = – 3x2 + 6mx = – 3x(x – 2m)

 y'=03x=0x2m=0x=0x=2m

Để đồ thị hàm số có 2 điểm cực trị thì m ≠ 0

Khi đó A(0; – 3m – 1) và B(2m; 4m3 – 3m – 1) là hai điểm cực trị của đồ thị hàm số

Suy ra trung điểm I của AB là I(m; 2m3 – 3m – 1)

Và  AB=2m;4m3=2m1;2m2

Đường thẳng d có 1 vectơ chỉ phương là  u=8;1

Để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d

 IdAB.u=0
 m+82m33m174=082m2=0
 m+16m324m874=0m2=4
 16m323m82=0m2=4m=2

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Media VietJack

Gọi M là trung điểm của BC

Suy ra AM là trung tuyến của tam giác ABC

Do đó  AM=a32

Mà tam giác ABC đều nên AM BC

Mà SA BC nên BC (SAM)

Suy ra (SBC) (SAM)

Ta có SA (ABC)

Suy ra (SAM) (ABC)

Do đó góc giữa (SBC) và (ABC) là  SMA^=45°

Xét tam giác SAM vuông tại A có  SMA^=45°

Nên tam giác SAM vuông cân tại A

Suy ra  SA=AM=a32

Ta có:  VS.ABC=13.SA.SABC=13.a32.12.a32.a=a38.

Vậy ta chọn đáp án A.

Lời giải

Điều kiện x > 0

Áp dụng công thức đổi cơ số, ta có:

 log2x+log3x+log4x=log20x
 log2x+log2xlog23+log2xlog24=log2xlog220

 log2x1+1log23+12+1log220=0 

 log2x32+log22log202=0

Ta có:  32+log22log202>32+01>0

Do đó từ phương trình trên, ta phải có log2x = 0 hay x = 20 = 1

Vậy phương trình có nghiệm duy nhất x = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP