Quảng cáo
Trả lời:
b) Gọi Q là giao điểm của MN và CH
Xét hình chữ nhật CMHN có hai đường chéo MN cắt CH tại Q
Suy ra MN = CH và
Do đó QN = QH
Suy ra tam giác QNH cân tại Q nên
Gọi P là trung điểm của BH
Xét tam giác BHN vuông tại N có NP là đường trung tuyến
Suy ra
Do đó tam giác PHN cân tại P nên
Ta có
Mà , và
Suy ra , hay
Do đó MN ⊥ NP
Xét (P) đường kính BH có MN ⊥ NP và NP là bán kính
Suy ra MN là tiếp tuyến của đường tròn đường kính BH.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A

Gọi M là trung điểm của BC
Suy ra AM là trung tuyến của tam giác ABC
Do đó
Mà tam giác ABC đều nên AM ⊥ BC
Mà SA ⊥ BC nên BC ⊥ (SAM)
Suy ra (SBC) ⊥ (SAM)
Ta có SA ⊥ (ABC)
Suy ra (SAM) ⊥ (ABC)
Do đó góc giữa (SBC) và (ABC) là
Xét tam giác SAM vuông tại A có
Nên tam giác SAM vuông cân tại A
Suy ra
Ta có: .
Vậy ta chọn đáp án A.
Lời giải
Điều kiện x > 0
Áp dụng công thức đổi cơ số, ta có:
Ta có:
Do đó từ phương trình trên, ta phải có log2x = 0 hay x = 20 = 1
Vậy phương trình có nghiệm duy nhất x = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.