Câu hỏi:

13/07/2024 987

Cho tam giác nhọn ABC có trực tâm H. Vẽ các đường thẳng d vuông góc với AB tại B, d’ vuông góc với AC tại C, d và d’ cắt nhau tại N. Chứng mình rằng:

a) Tứ giác BHCN là hình bình hành.

b) HN đi qua trung điểm I của đoạn thẳng BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác nhọn ABC có trực tâm H. Vẽ các đường thẳng d vuông góc với AB tại B, d’ vuông góc với AC tại C, d và d’ cắt nhau tại N. Chứng mình rằng: a) Tứ giác BHCN là hình bình hành. b) HN đi qua trung điểm I của đoạn thẳng BC. (ảnh 1)

(H.3.23). Vì H là trực tâm của ∆ABC nên CH ⊥ AB, BH ⊥ AC.

Ta có CH ⊥ AB, NB ⊥ AB ⇒ CH // NB.

Tương tự BH // CN.

Từ đó, suy ra BHCN là hình bình hành.

b) Ta có BHCN là hình bình hành nên BC và HN cắt nhau tại trung điểm mỗi đường, do đó HN đi qua trung điểm I của đoạn thẳng BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng: a) Hai tứ giác AEFD, AECF là những hình bình hành. b) EF = AD, AF = EC. (ảnh 1)

(H.3.21). a) Do ABCD là hình bình hành nên AB // CD, AB = CD, từ đó AE // CF, AE = EB = DF = FC.

Do đó tứ giác AEFD là hình bình hành.

Tương tự, tứ giác AECF là hình bình hành vì có hai cạnh đối AE và CF song song và bằng nhau.

b) Vì AEFD là hình bình hành nên AD = EF.

Vì AECF là hình bình hành nên AF = EC.

Lời giải

Đáp án đúng là: D

Theo tính chất của hình bình hành thì có các cạnh đối bằng nhau, các góc đối bằng nhau, hai đường chéo cắt nhau tại trung điểm mỗi đường.

Do đó câu sai là: Hình bình hành có hai đường chéo vuông góc với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP