Câu hỏi:

13/07/2024 407 Lưu

Cho ∆ABC đều, cạnh 3 cm; M, N là trung điểm của AB và AC. Chu vi của tứ giác MNCB bằng:

A. 8 cm.

B. 7,5 cm.

C. 6 cm.

D. 7 cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có M, N là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC nên BC = 2MN.

Khi đó MN = 1,5 cm.

Chu vi của tứ giác MNCB là:

MN + NC + BC + MB = 1,5 + 1,5 + 3 + 1,5 = 7,5 (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BMNC là hình thang. b) Tứ giác MNPB là hình gì? Tại sao? (ảnh 1)

(H.4.13). a) ∆ABC có M là trung điểm AB, N là trung điểm AC nên MN là đường trung bình của ∆ABC, suy ra MN // AC.

Xét tứ giác BMNC có MN // AC nên là tứ giác BMNC là hình thang.

b) MN là đường trung bình của ∆ABC nên MN=12AC,MNAC.

Xét tứ giác MNPB có: MN // BP, MN = BP nên tứ giác MNPB là hình bình hành.

Lời giải

Đáp án đúng là: C

Tam giác có 3 cạnh nên tạo được 3 đường trung bình.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP