Câu hỏi:
13/07/2024 551Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng EI = DK.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
∆ABC có: E là trung điểm AB, D là trung điểm AC, nên DE là đường trung bình của ∆ABC.
Suy ra ED // BC và ED = (tính chất đường trung bình của tam giác). (1)
∆GBC có: I là trung điểm GB, K là trung điểm GC nên IK là đường trung bình của ∆GBC. Suy ra IK // BC và IK = BC. (2)
Từ (1) và (2) suy ra: IK // ED, IK = ED.
Tứ giác EDKI có: IK // ED, IK = ED nên tứ giác EDKI là hình bình hành.
Suy ra EI = DK.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC.
a) Chứng minh tứ giác BMNC là hình thang.
b) Tứ giác MNPB là hình gì? Tại sao?
Câu 2:
Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.
Câu 3:
Mỗi tam giác có bao nhiêu đường trung bình?
A. 1.
B. 2.
C. 3.
D. 4.
Câu 4:
Cho ∆ABC đều, cạnh 3 cm; M, N là trung điểm của AB và AC. Chu vi của tứ giác MNCB bằng:
A. 8 cm.
B. 7,5 cm.
C. 6 cm.
D. 7 cm.
Câu 5:
Cho tam giác ABC, trung tuyến AM. Lấy điểm D và E trên cạnh AB sao cho AD = DE = EB và D nằm giữa hai điểm A, E.
a) Chứng minh: DC // EM.
b) DC cắt AM tại I. Chứng minh I là trung điểm của AM.
Câu 6:
Cho tam giác ABC có chu vi bằng 20 cm. Gọi M, N, P lần lượt là trung điểm của AB, BC, AC. Chu vi tam giác MNP bằng:
A. 20 cm.
B. 10 cm2.
C. 10 cm.
D. 40 cm.
về câu hỏi!