Một số loài hoa có số lượng cánh hoa luôn là một số cố định. Số cánh hoa trong các bông hoa thường xuất hiện nhiều theo những con số 1, 1, 2, 3, 5, 8, 13, 21,...

Ta có thể viết số cánh hoa của các bông hoa ở các hình trên lần lượt như sau: vị trí thứ nhất viết số 1, vị trí thứ hai viết số 1, vị trí thứ ba viết số 2,..., vị trí thứ tám viết số 21.
Các số 1, 1, 2, 3, 5, 8, 21 được viết theo quy tắc trên gợi nên khái niệm nào trong toán học?
Một số loài hoa có số lượng cánh hoa luôn là một số cố định. Số cánh hoa trong các bông hoa thường xuất hiện nhiều theo những con số 1, 1, 2, 3, 5, 8, 13, 21,...
Ta có thể viết số cánh hoa của các bông hoa ở các hình trên lần lượt như sau: vị trí thứ nhất viết số 1, vị trí thứ hai viết số 1, vị trí thứ ba viết số 2,..., vị trí thứ tám viết số 21.
Các số 1, 1, 2, 3, 5, 8, 21 được viết theo quy tắc trên gợi nên khái niệm nào trong toán học?
Câu hỏi trong đề: Giải SGK Toán 11 CD Bài 1. Dãy số có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
Các số 1, 1, 2, 3, 5, 8, 21 được viết theo quy tắc trên gợi nên khái niệm “dãy số” trong toán học. Bài học ngày hôm nay sẽ tìm hiểu về khái niệm này.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Số tiền chị có trong ngân hàng sau 1 tháng là:
P1 = 100 + 100.0,5% + 6 = 100,5 + 6 (triệu đồng).
b) Số tiền chị có trong ngân hàng sau 2 tháng là:
P2 = 100,5 + 6 + (100,5 + 6).0,5% + 6= (100,5 + 6)(1 + 0,5%) + 6 = 100,5(1 + 0,5%) + 6.(1 + 0,5%) + 6 (triệu đồng)
Số tiền chị có trong ngân hàng sau 3 tháng là:
P3 = (100,5 + 6)(1 + 0,5%) + 6 + [(100,5 + 6)(1 + 0,5%) + 6 ].0,5% + 6
= 100,5.(1 + 0,5%)2 + 6(1 + 0,5%)2 + 6.(1 + 0,5%) + 6 (triệu đồng).
c) Số tiền chị có trong ngân hàng sau 4 tháng là:
P4 = (100,5 + 6)(1 + 0,5%)2 + 6.(1 + 0,5%) + 6 + [(100,5 + 6)(1 + 0,5%)2 + 6.(1 + 0,5%) + 6]0,5% + 6
= 100,5.(1 + 0,5%)3 + 6.(1 + 0,5%)3 + 6(1 + 0,5%)2 + 6.(1 + 0,5%) + 6
Số tiền chị có trong ngân hàng sau n tháng là:
Pn = 100,5.(1 + 0,5%)n-1 + 6(1 + 0,5%)n-1 + 6(1 + 0,5%)n-2 + 6.(1 + 0,5%)n-3 + ... + 6 với mọi n ∈ ℕ*.
Lời giải
Lời giải
a) Ta có: \({u_{n + 1}} = \frac{{n + 1 - 3}}{{n + 1 + 2}} = \frac{{n - 2}}{{n + 3}}\)
Xét hiệu \({u_{n + 1}} - {u_n} = \frac{{n - 2}}{{n + 3}} - \frac{{n - 3}}{{n + 2}} = \frac{{{n^2} - 4 - {n^2} + 9}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{5}{{\left( {n + 3} \right)\left( {n + 2} \right)}} > 0,\forall n \in {\mathbb{N}^*}\).
Suy ra un+1 > un
Vì vậy dãy số đa cho là dãy số tăng.
b) Ta có: \({u_{n + 1}} = \frac{{{3^{n + 1}}}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} = \frac{{{{3.3}^n}}}{{2\left( {n + 1} \right){{.2}^n}.n!}} = \frac{3}{{2\left( {n + 1} \right)}}.{u_n}\)
Vì n ∈ ℕ* nên \(\frac{3}{{2\left( {n + 1} \right)}} < \frac{3}{2}\) suy ra un+1 < un.
Vì vậy dãy số đa cho là dãy số giảm.
c) Ta có: un+1 = (– 1)n+1.(2n+1 + 1)
+) Nếu n chẵn thì un+1 = – (2.2n + 1) và un = 2n + 1. Do đó un+1 < un.
Vì vậy với n chẵn thì dãy số đã cho là dãy giảm.
+) Nếu n lẻ thì un+1 = 2.2n + 1 và un = – (2n + 1). Do đó un+1 > un.
Vì vậy với n chẵn thì dãy số đã cho là dãy tăng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.