Câu hỏi:
13/07/2024 4,026Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d bất kì sao cho đường thẳng d không cắt đoạn thẳng BC. Gọi D, E lần lượt là hình chiếu của B, C trên đường thẳng d. Chứng minh AD2 + AE2 không phụ thuộc vào vị trí của đường thẳng d.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do BD ⊥ d nên \(\widehat {ADB} = 90^\circ \), do đó tam giác ABD vuông tại D
Suy ra \(\widehat {ABD} + \widehat {BAD} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°) (1)
Mà \[\widehat {BAD} + \widehat {BAC} + \widehat {CAE} = 180^\circ \]
Suy ra \[\widehat {BAD} + \widehat {CAE} = 180^\circ - \widehat {BAC} = 180^\circ - 90^\circ = 90^\circ \] (2)
Từ (1) và (2) ta có \(\widehat {ABD} = \widehat {CAE}\).
Xét ∆ABD vuông tại D và ∆CAE vuông tại E có:
AB = CA, \(\widehat {ABD} = \widehat {CAE}\)
Do đó ∆ABD = ∆CAE (cạnh huyền – góc nhọn)
Suy ra AD = CE (hai cạnh tương ứng)
Khi đó AD2 + AE2 = CE2 + AE2 = AC2 (do tam giác CAE vuông tại E)
Vậy AD2 + AE2 không phụ thuộc vào vị trí của đường thẳng d.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hình 4 mô tả một chiếc thước của người thợ sử dụng khi xây móng nhà để kiểm tra xem hai phần móng nhà có vuông góc với nhau hay không. Trên hình, ta đo được AB = 4 dm, AC = 3 dm và BC = 5 dm. Em hãy giải thích vì sao hai cạnh của chiếc thước đó vuông góc với nhau.
Câu 2:
Tính chu vi của tứ giác ABCD ở Hình 5 (làm tròn kết quả đến hàng phần trăm của centimét). Biết rằng độ dài cạnh mỗi ô vuông là 1 cm.
Câu 3:
Cho tam giác ABC vuông cân tại A có độ dài cạnh góc vuông AB và AC là 4 cm. Kẻ đường cao AD của tam giác ABC.
Tính độ dài cạnh đáy BC (làm tròn kết quả đến hàng phần trăm của centimét).
về câu hỏi!