Câu hỏi:
13/07/2024 3,073Cho tứ giác ABCD có AB // CD, \(\widehat B = 135^\circ \), \(\widehat D = 70^\circ \), \(\widehat {ACB} = 25^\circ \) (Hình 8a). Tính số đo góc DAC.
Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Tứ giác có đáp án !!
Quảng cáo
Trả lời:
Trong tam giác ABC, ta có: \(\widehat {ABC} + \widehat {BAC} + \widehat {BCA} = 180^\circ \)
Suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {BCA}} \right) = 180^\circ - \left( {135^\circ + 25^\circ } \right) = 20^\circ \).
Do AB // CD nên \(\widehat {ACD} = \widehat {BAC} = 20^\circ \) (hai góc so le trong).
Trong tam giác ACD, ta có: \(\widehat {ADC} + \widehat {ACD} + \widehat {DAC} = 180^\circ \)
Suy ra \(\widehat {DAC} = 180^\circ - \left( {\widehat {ADC} + \widehat {ACD}} \right) = 180^\circ - \left( {70^\circ - 20^\circ } \right) = 90^\circ \).
Vậy \(\widehat {DAC} = 90^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trong tứ giác MNPQ, ta có: \(\widehat Q + \widehat {QMN} + \widehat N + \widehat {NPQ} = 360^\circ \)
Suy ra \(\widehat {NPQ} = 360^\circ - \left( {\widehat {QMN} + \widehat N + \widehat Q} \right) = 360^\circ - \left( {110^\circ + 120^\circ + 60^\circ } \right) = 70^\circ \).
Do PM là tia phân giác của góc NPQ nên ta có:
\(\widehat {NPM} = \widehat {MPQ} = \frac{{\widehat {NPQ}}}{2} = \frac{{70^\circ }}{2} = 35^\circ \).
Trong tam giác MPQ, ta có: \(\widehat Q + \widehat {QMP} + \widehat {MPQ} = 180^\circ \)
Suy ra \(\widehat {QMP} = 180^\circ - \left( {\widehat {MPQ} + \widehat Q} \right) = 180^\circ - \left( {35^\circ + 60^\circ } \right) = 85^\circ \).
Vậy \(\widehat {NPM} = \widehat {MPQ} = 35^\circ \), \(\widehat {QMP} = 85^\circ \).
Lời giải
Trong tứ giác GHIK, ta có: \(\widehat {KGH} + \widehat H + \widehat I + \widehat K = 360^\circ \)
Suy ra \(\widehat H = 360^\circ - \left( {\widehat {KGH} + \widehat I + \widehat K} \right) = 360^\circ - \left( {90^\circ + 65^\circ + 90^\circ } \right) = 115^\circ \).
Trong tam giác GHE, ta có: \(\widehat H + \widehat {HGE} + \widehat {HEG} = 180^\circ \)
Suy ra \(\widehat {HEG} = 180^\circ - \left( {\widehat {HGE} + \widehat H} \right) = 180^\circ - \left( {25^\circ + 115^\circ } \right) = 40^\circ \).
Mà \(\widehat {HEG} + \widehat {GEI} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {GEI} = 180^\circ - \widehat {HEG} = 180^\circ - 40^\circ = 140^\circ \).
Vậy \(\widehat {GEI} = 140^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận