Câu hỏi:
13/07/2024 977
Chứng minh rằng: Trong một tứ giác, tổng độ dài hai đường chéo lớn hơn tổng độ dài hai cạnh đối.
Chứng minh rằng: Trong một tứ giác, tổng độ dài hai đường chéo lớn hơn tổng độ dài hai cạnh đối.
Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Tứ giác có đáp án !!
Quảng cáo
Trả lời:

Gọi O là giao điểm của hai đường chéo AC và BD trong tứ giác ABCD.
Xét tam giác OAB, ta có: OA + OB > AB.
Xét tam giác OCD, ta có: OC + OD > CD.
Suy ra OA + OB + OC + OD > AB + CD hay AC + BD > AB + CD.
Tương tự, ta cũng chứng minh được: AC + BD > AD + BC.
Vậy: trong một tứ giác, tổng độ dài hai đường chéo lớn hơn tổng độ dài hai cạnh đối.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trong tứ giác MNPQ, ta có: \(\widehat Q + \widehat {QMN} + \widehat N + \widehat {NPQ} = 360^\circ \)
Suy ra \(\widehat {NPQ} = 360^\circ - \left( {\widehat {QMN} + \widehat N + \widehat Q} \right) = 360^\circ - \left( {110^\circ + 120^\circ + 60^\circ } \right) = 70^\circ \).
Do PM là tia phân giác của góc NPQ nên ta có:
\(\widehat {NPM} = \widehat {MPQ} = \frac{{\widehat {NPQ}}}{2} = \frac{{70^\circ }}{2} = 35^\circ \).
Trong tam giác MPQ, ta có: \(\widehat Q + \widehat {QMP} + \widehat {MPQ} = 180^\circ \)
Suy ra \(\widehat {QMP} = 180^\circ - \left( {\widehat {MPQ} + \widehat Q} \right) = 180^\circ - \left( {35^\circ + 60^\circ } \right) = 85^\circ \).
Vậy \(\widehat {NPM} = \widehat {MPQ} = 35^\circ \), \(\widehat {QMP} = 85^\circ \).
Lời giải
Trong tam giác ABC, ta có: \(\widehat {ABC} + \widehat {BAC} + \widehat {BCA} = 180^\circ \)
Suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {BCA}} \right) = 180^\circ - \left( {135^\circ + 25^\circ } \right) = 20^\circ \).
Do AB // CD nên \(\widehat {ACD} = \widehat {BAC} = 20^\circ \) (hai góc so le trong).
Trong tam giác ACD, ta có: \(\widehat {ADC} + \widehat {ACD} + \widehat {DAC} = 180^\circ \)
Suy ra \(\widehat {DAC} = 180^\circ - \left( {\widehat {ADC} + \widehat {ACD}} \right) = 180^\circ - \left( {70^\circ - 20^\circ } \right) = 90^\circ \).
Vậy \(\widehat {DAC} = 90^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.