Giải SBT Toán 8 Cánh Diều Tứ giác có đáp án
31 người thi tuần này 4.6 504 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Tổng hợp Lý thuyết & Trắc nghiệm Chương 4 Hình học 8
Bài tập Chia đa thức một biến đã sắp xếp (có lời giải chi tiết)
Đề thi Toán lớp 8 Giữa học kì 2 năm 2020 - 2021 có đáp án (Đề 1)
Bài tập Trường hợp đồng dang thứ ba (có lời giải chi tiết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Trong tứ giác ABCD, ta có: \(\widehat {DAB} + \widehat B + \widehat C + \widehat D = 360^\circ \).
Do đó: \(\widehat {DAB} = 360^\circ - \left( {\widehat B + \widehat C + \widehat D} \right) = 360^\circ - \left( {120^\circ + 80^\circ + 50^\circ } \right) = 110^\circ \).
Ta có: \(\widehat {DAB} + x = 180^\circ \) (hai góc kề bù).
Suy ra \(x = 180^\circ - \widehat {DAB} = 180^\circ - 110^\circ = 70^\circ \).
Lời giải
Ta có: \(\widehat {GHI} + 65^\circ = 180^\circ \) (hai góc kề bù).
Suy ra \(\widehat {GHI} = 180^\circ - 65^\circ = 115^\circ \).
Trong tứ giác GHIK, ta có: \(\widehat G + \widehat {GHI} + \widehat I + \widehat K = 360^\circ \).
Do đó: 90° + 115° + 90° + y = 360°
Hay y + 295° = 360°.
Suy ra y = 65°.
Lời giải
Ta có: \(\widehat {MNP} + 60^\circ = 180^\circ \) (hai góc kề bù). Suy ra \(\widehat {MNP} = 120^\circ \).
Ta cũng có: \(\widehat {NPQ} + 130^\circ = 180^\circ \) (hai góc kề bù). Suy ra \(\widehat {NPQ} = 50^\circ \).
Trong tứ giác MNPQ, ta có: \(\widehat M + \widehat {MNP} + \widehat {NPQ} + \widehat Q = 360^\circ \).
Do đó: 90° + 120° + 50° + z = 360°
Hay z + 260° = 360°.
Suy ra z = 100°.
Lời giải
Trong tứ giác ABCD, ta có: \(\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {CDA} = 360^\circ \).
Ta có: \(\widehat {DAB} + \widehat {{A_1}} = \widehat {ABC} + \widehat {{B_1}} = \widehat {BCD} + \widehat {{C_1}} = \widehat {CDA} + \widehat {{D_1}} = 180^\circ \) (các cặp góc kề bù).
Suy ra:
\(\left( {180^\circ - \widehat {{A_1}}} \right) + \left( {180^\circ - \widehat {{B_1}}} \right) + \left( {180^\circ - \widehat {{C_1}}} \right) + \left( {180^\circ - \widehat {{D_1}}} \right) = 360^\circ \)
Hay \[720^\circ - \left( {\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}} \right) = 360^\circ \].
Do đó \(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}} = 360^\circ \).
Vậy \(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}} = 360^\circ \).
Lời giải
Trong tam giác ABC, ta có: \(\widehat {ABC} + \widehat {BAC} + \widehat {BCA} = 180^\circ \)
Suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {BCA}} \right) = 180^\circ - \left( {135^\circ + 25^\circ } \right) = 20^\circ \).
Do AB // CD nên \(\widehat {ACD} = \widehat {BAC} = 20^\circ \) (hai góc so le trong).
Trong tam giác ACD, ta có: \(\widehat {ADC} + \widehat {ACD} + \widehat {DAC} = 180^\circ \)
Suy ra \(\widehat {DAC} = 180^\circ - \left( {\widehat {ADC} + \widehat {ACD}} \right) = 180^\circ - \left( {70^\circ - 20^\circ } \right) = 90^\circ \).
Vậy \(\widehat {DAC} = 90^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.









 Nhắn tin Zalo
 Nhắn tin Zalo