Câu hỏi:
13/07/2024 5,403Cho hình thang cân ABCD có AB // CD, AB < CD, hai đường chéo AC và BD cắt nhau tại P, hai cạnh bên AD và BC kéo dài cắt nhau tại Q. Chứng minh PQ là đường trung trực của hai đáy hình thang cân ABCD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
• Xét ∆ACD và ∆BDC có:
AD = BC;
\(\widehat {ADC} = \widehat {BCD}\) (do ABCD là hình thang cân);
CD là cạnh chung
Do đó ∆ACD = ∆BDC (c.g.c).
Suy ra \(\widehat {ACD} = \widehat {BDC}\) (hai góc tương ứng)
Tam giác PCD có \(\widehat {PCD} = \widehat {PDC}\) nên là tam giác cân tại P.
Suy ra PC = PD.
Mà AC = BD (do ∆ACD = ∆BDC);
AC = AP + PC; BD = PD + BD
Suy ra PA = PB nên P nằm trên đường trung trực của AB (1)
• Do AB // CD nên \(\widehat {QAB} = \widehat {ADC};\widehat {QBA} = \widehat {BCD}\) (các cặp góc đồng vị).
Mặt khác, \(\widehat {ADC} = \widehat {BCD}\) (do ∆ACD = ∆BDC) nên \(\widehat {QAB} = \widehat {QBA}\).
Do đó, tam giác QAB cân tại Q.
Suy ra QA = QB nên Q nằm trên đường trung trực của AB (2)
Từ (1) và (2) suy ra PQ là đường trung trực của AB.
• Ta có: AD = BC và PA = PB suy ra QD = QC.
Do đó Q nằm trên đường trung trực của CD.
Mặt khác PC = PD (chứng minh trên) nên P cũng nằm trên đường trung trực của CD.
Suy ra PQ là đường trung trực của CD.
Vậy PQ là đường trung trực của cả hai đoạn AB và CD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD có AB // CD, AB = 3 cm, CD = 6 cm, AD = 2,5 cm. Gọi M, N lần lượt là hình chiếu của A, B trên đường thẳng CD. Tính độ dài các đoạn thẳng DM, DN, AM.
Câu 2:
Cho tam giác ABC cân tại A. Lấy điểm M, N lần lượt trên cạnh AB, AC sao cho AM = AN.
Chứng minh tứ giác BMNC là hình thang cân.
Câu 3:
Cho tứ giác ABCD có \(\widehat C = \widehat D\) và AD = BC. Chứng minh tứ giác ABCD là hình thang cân.
Câu 4:
Cho tam giác đều ABC có độ dài cạnh là 6 cm. Trên tia BA, CA lần lượt lấy điểm D, E sao cho AD = AE = 2 cm (Hình 12).
Tính độ dài đoạn thẳng CD (làm tròn kết quả đến hàng phần mười của centimét).
Câu 5:
Cho tam giác ABC cân tại A. Lấy điểm M, N lần lượt trên cạnh AB, AC sao cho AM = AN.
Xác định vị trí các điểm M, N để BM = MN = NC.
Câu 6:
Cho tam giác đều ABC có độ dài cạnh là 6 cm. Trên tia BA, CA lần lượt lấy điểm D, E sao cho AD = AE = 2 cm (Hình 12).
Tứ giác BCDE là hình gì? Vì sao?
về câu hỏi!