Câu hỏi:
13/07/2024 3,368Cho tam giác đều ABC có độ dài cạnh là 6 cm. Trên tia BA, CA lần lượt lấy điểm D, E sao cho AD = AE = 2 cm (Hình 12).
Tính độ dài đoạn thẳng CD (làm tròn kết quả đến hàng phần mười của centimét).
Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Hình thang cân có đáp án !!
Quảng cáo
Trả lời:
Kẻ DH vuông góc với CE tại H.
Xét ∆ADH vuông tại H và ∆EDH vuông tại H có:
ED = AD (chứng minh câu a), cạnh DH chung
Do đó ∆ADH = ∆EDH (cạnh huyền – cạnh góc vuông).
Suy ra AH = EH (hai cạnh tương ứng)
Hay H là trung điểm của AE nên \(AH = EH = \frac{{AE}}{2} = \frac{2}{2} = 1{\rm{\;}}\;\;\left( {{\rm{cm}}} \right)\).
Áp dụng định lý Pythagore cho tam giác ADH vuông tại H, ta có: AD2 = AH2 + DH2.
Suy ra DH2 = AD2 ‒ AH2 = 22 ‒ 12 = 3.
Ta có: CH = AC + AH = 6 + 1 = 7 cm.
Áp dụng định lý Pythagore cho tam giác CDH vuông tại H, ta có: CD2 = CH2 + DH2.
Suy ra CD2 = 72 + 3 = 49 + 3 = 52.
Vậy \(CD = \sqrt {52} \approx 7,2\;\;\left( {{\rm{cm}}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
• Xét ∆ACD và ∆BDC có:
AD = BC;
\(\widehat {ADC} = \widehat {BCD}\) (do ABCD là hình thang cân);
CD là cạnh chung
Do đó ∆ACD = ∆BDC (c.g.c).
Suy ra \(\widehat {ACD} = \widehat {BDC}\) (hai góc tương ứng)
Tam giác PCD có \(\widehat {PCD} = \widehat {PDC}\) nên là tam giác cân tại P.
Suy ra PC = PD.
Mà AC = BD (do ∆ACD = ∆BDC);
AC = AP + PC; BD = PD + BD
Suy ra PA = PB nên P nằm trên đường trung trực của AB (1)
• Do AB // CD nên \(\widehat {QAB} = \widehat {ADC};\widehat {QBA} = \widehat {BCD}\) (các cặp góc đồng vị).
Mặt khác, \(\widehat {ADC} = \widehat {BCD}\) (do ∆ACD = ∆BDC) nên \(\widehat {QAB} = \widehat {QBA}\).
Do đó, tam giác QAB cân tại Q.
Suy ra QA = QB nên Q nằm trên đường trung trực của AB (2)
Từ (1) và (2) suy ra PQ là đường trung trực của AB.
• Ta có: AD = BC và PA = PB suy ra QD = QC.
Do đó Q nằm trên đường trung trực của CD.
Mặt khác PC = PD (chứng minh trên) nên P cũng nằm trên đường trung trực của CD.
Suy ra PQ là đường trung trực của CD.
Vậy PQ là đường trung trực của cả hai đoạn AB và CD.
Lời giải
• Xét ∆ADM vuông tại M và ∆BCN vuông tại N có:
AD = BC; \(\widehat {ADM} = \widehat {BCN}\) (do ABCD là hình thang cân)
Do đó ∆ADM = ∆BCN (cạnh huyền – góc nhọn).
Suy ra AM = BN; DM = CN (các cặp cạnh tương ứng)
• Do AB // CD mà BN ⊥ CD nên BN ⊥ AB, do đó tam giác ABN vuông tại B.
Xét ∆ABN vuông tại B và ∆NMA vuông tại M có:
\(\widehat {BAN} = \widehat {MNA}\) (2 góc so le trong của AB // CD);
Cạnh AN chung
Do đó ∆ABN = ∆NMA (cạnh huyền – góc nhọn).
Suy ra AB = NM (hai cạnh tương ứng)
Mà AB = 3 cm nên NM = 3 cm.
• Ta có DM + NM + CN = CD và DM = CN nên 2DM + 3 = 6.
Suy ra DM = 1,5 cm.
Mà DN = DM + NM = 1,5 + 3 = 4,5 cm.
Trong tam giác ADM vuông tại M, ta có: AD2 = AM2 + DM2.
Suy ra AM2 = AD2 ‒ DM2 = 2,52 ‒ 1,52 = 4.
Vậy \(AM = \sqrt 4 = 2\;\;\left( {{\rm{cm}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 25
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề cuối kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án- Đề 4