Câu hỏi:

13/07/2024 551

Cho tam giác ABC nhọn có các đường cao BD, CE. Tia phân giác của các góc ACE, ABD cắt nhau tại O và cắt AB, AC lần lượt tại M, N. Tia BN cắt CE tại K, tia CM cắt BD tại H. Chứng minh:

Tứ giác MNHK là hình thoi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nhọn có các đường cao BD chứng minh Tứ giác MNHK là hình thoi (ảnh 1)

Xét ∆BMO vuông tại O và ∆BHO vuông tại O có:

Cạnh BO chung, \(\widehat {MBO} = \widehat {HBO}\)

Do đó ∆BMO = ∆BHO (cạnh góc vuông – góc nhọn kề).

Suy ra OM = OH (hai cạnh tương ứng)

Hay O là trung điểm của MH.

Tương tự ta chứng minh được ∆CNO = ∆CKO (cạnh góc vuông – góc nhọn kề).

Suy ra ON = OK (hai cạnh tương ứng)

Hay O là trung điểm của NK.

Tứ giác MNHK có hai đường chéo MH và NK cắt nhau tại trung điểm O của mỗi đường nên MNHK là hình bình hành.

Hình bình hành MNHK có MH NK nên MNHK là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thoi ABCD có góc B tù. Kẻ BE vuông góc AD tại E, BF vuông góc với CD tại F (ảnh 1)

Gọi O là giao điểm của AC và BD.

Do ABCD là hình thoi nên AC vuông góc với BD tại trung điểm O của BD.

Suy ra AC là đường trung trực của BD. Do đó BM = DM, BN = DN.

Do ABCD là hình thoi nên BA = BC, \(\widehat {BAE} = \widehat {BCF}\).

Xét ∆ABE vuông tại E và ∆BCF vuông tại F có:

BA = BC, \(\widehat {BAE} = \widehat {BCF}\).

Do đó ∆ABE = ∆BCF  (cạnh huyền – góc nhọn).

Suy ra \(\widehat {ABE} = \widehat {CBF}\) (hai góc tương ứng)

\(\widehat {ABD} = \widehat {CBD}\) (do ABCD là hình thoi nên BD là đường phân giác của góc ABC) , suy ra \(\widehat {MBO} = \widehat {NBO}\).

Xét ∆MBO vuông tại O và ∆NBO vuông tại O có:

\(\widehat {MBO} = \widehat {NBO}\), cạnh BO chung

Do đó ∆MBO = ∆NBO  (cạnh góc vuông – góc nhọn kề).

Suy ra BM = BN (hai cạnh tương ứng)

Mà BM = DM và BN = DN, suy ra BM = DM = BN = DN.

Tứ giác BMDN có BM = DM = BN = DN nên BMDN là hình thoi.

Lời giải

Cho một hình thoi có độ dài hai đường chéo là 18/5 m và 27/10 m. Tính chu vi và diện tích (ảnh 1)

Xét hình thoi ABCD có \(AC = \frac{{18}}{5}{\rm{\;m}},BD = \frac{{27}}{{10}}{\rm{\;m}}\).

Gọi O là giao điểm của hai đường chéo AC và BD.

Do ABCD là hình thoi nên AC BD, O là trung điểm của AC và BD.

Do O là trung điểm của AC nên \(OA = OC = \frac{{AC}}{2} = \frac{{\frac{{18}}{5}}}{2} = \frac{9}{5}{\rm{\;}}\)(m);

O là trung điểm của BD nên \(OB = OD = \frac{{BD}}{2} = \frac{{\frac{{27}}{{10}}}}{2} = \frac{{27}}{{20}}{\rm{\;}}\)(m).

Áp dụng định lý Pythagore cho tam giác OAB vuông tại O, ta có:

AB2 = OA2 + OB2.

Suy ra \(A{B^2} = {\left( {\frac{9}{5}} \right)^2} + {\left( {\frac{{27}}{{20}}} \right)^2} = \frac{{81}}{{25}} + \frac{{729}}{{400}} = \frac{{81}}{{16}}\)

Do đó \(AB = \sqrt {\frac{{81}}{{16}}} = \frac{9}{4}\,\,\left( {\rm{m}} \right)\).

Chu vi của hình thoi ABCD là: \(4AB = 4.\frac{9}{4} = 9\left( m \right)\).

Diện tích của hình thoi ABCD là: \(\frac{1}{2}AC.BD = \frac{1}{2}.\frac{{18}}{5}.\frac{{27}}{{10}} = \frac{{243}}{{50}}\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP